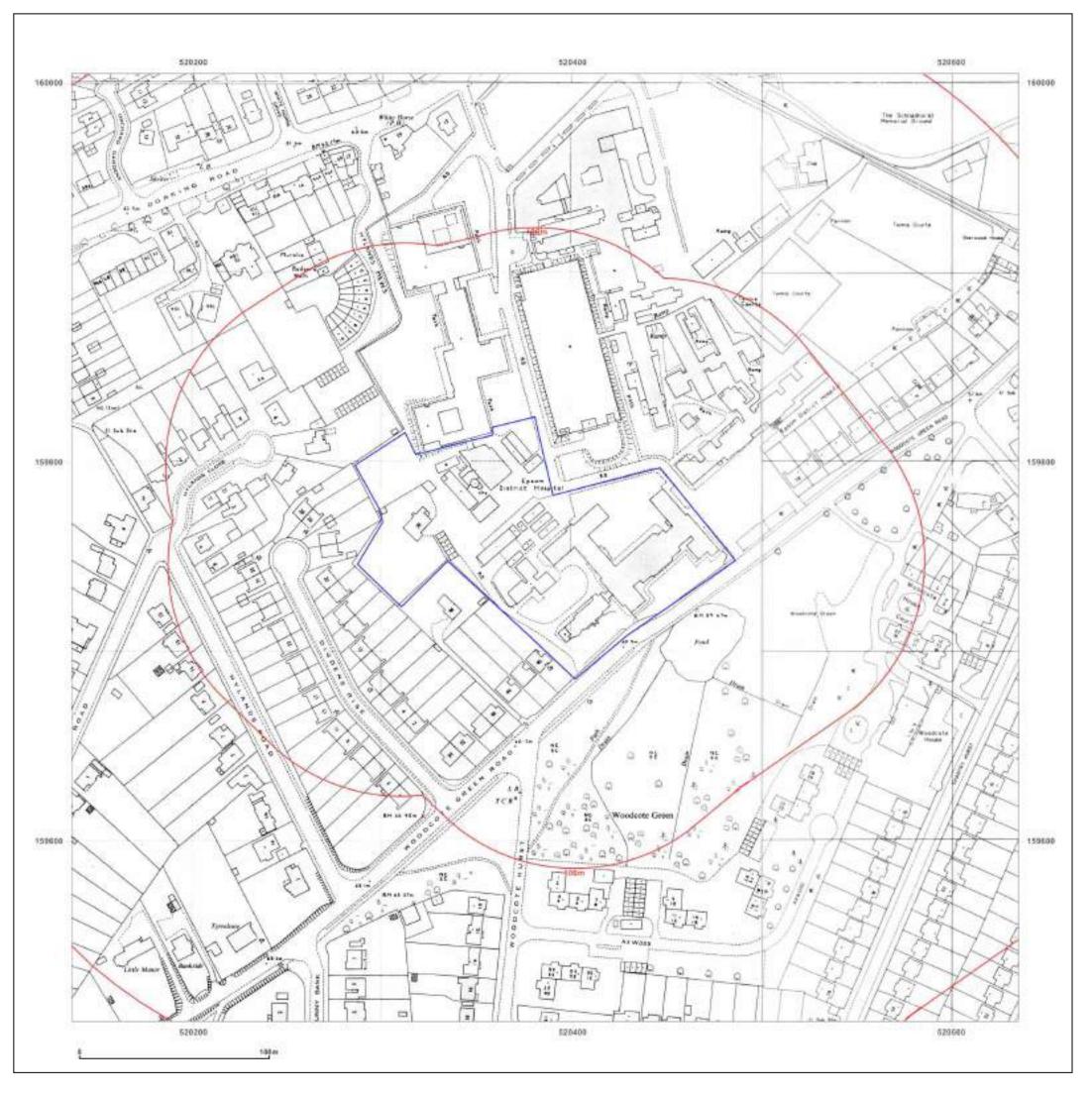


ROWAN HOUSE, EPSOM GENERAL HOSPITAL, DORKING ROAD, EPSOM, KT18 7EG



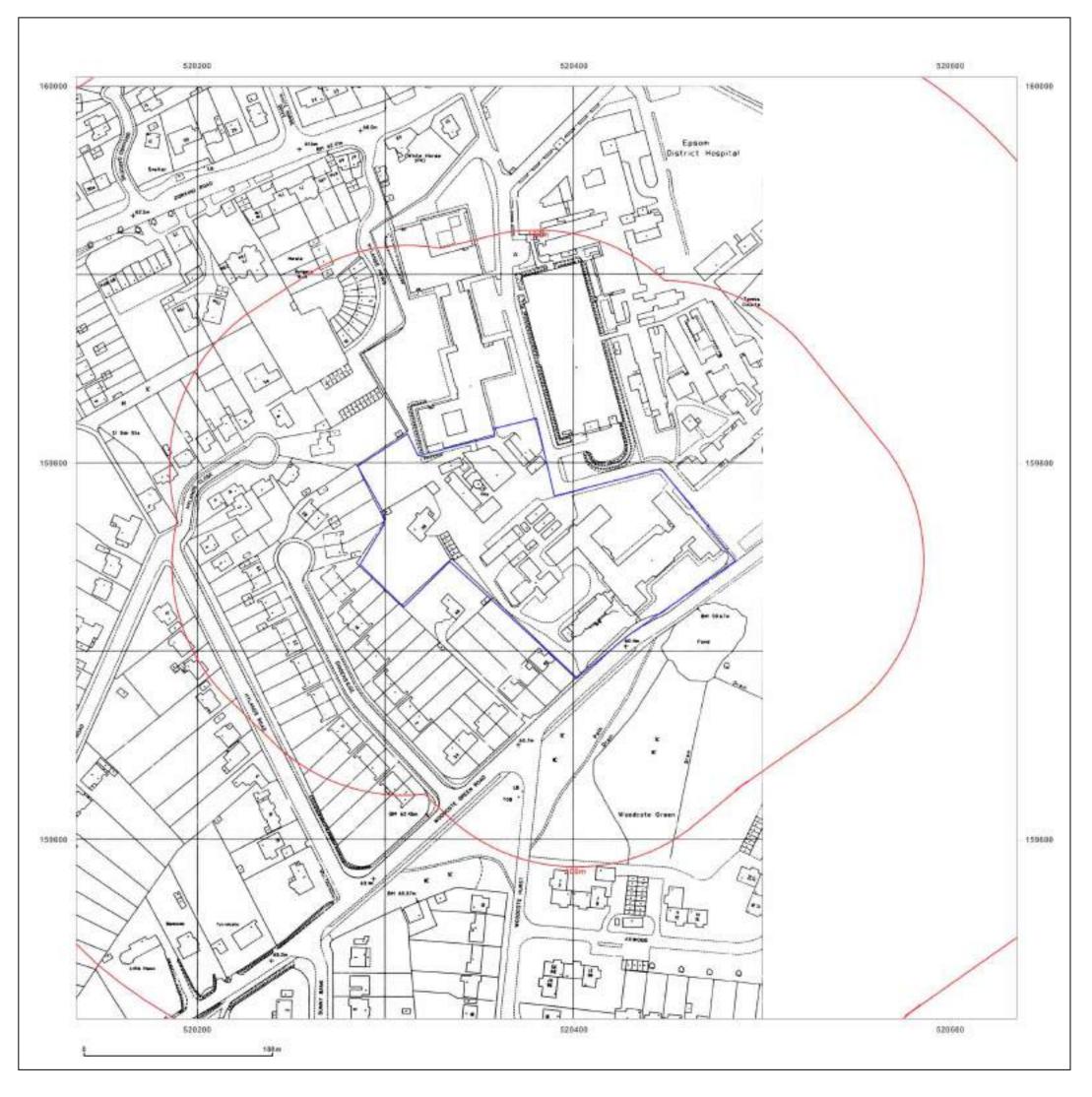
Produced by Groundsure Insights T: 08444 159000 E: info@groundsure.com W: www.groundsure.com

© Crown copyright and database rights 2018 Ordnance Survey 100035207

Production date: 23 August 2019

ROWAN HOUSE, EPSOM GENERAL HOSPITAL, DORKING ROAD, EPSOM, KT18 7EG

Client Ref: Report Ref: Grid Ref:	Epsom_Hospital_ GS-6266220 520385, 159755	
Map Name:	National Grid	N
Map date:	1987-1992	W E
Scale:	1:1,250	T L
Printed at:	1:2,000	S


Surveyed N/A	Surveyed WA
Revised N/A	Revised N/A
Edition N/A	Edition N/A
Copyright 1992	Copyright 1982
Levelled N/A	Levelled N/A
Surveyed 1964	Surveyed N/A
Revised 1987	Revised 1991
Edition N/A	Edition N/A
Copyright 1987	Copyright 1992
Levelled 1984	Levelled N/A

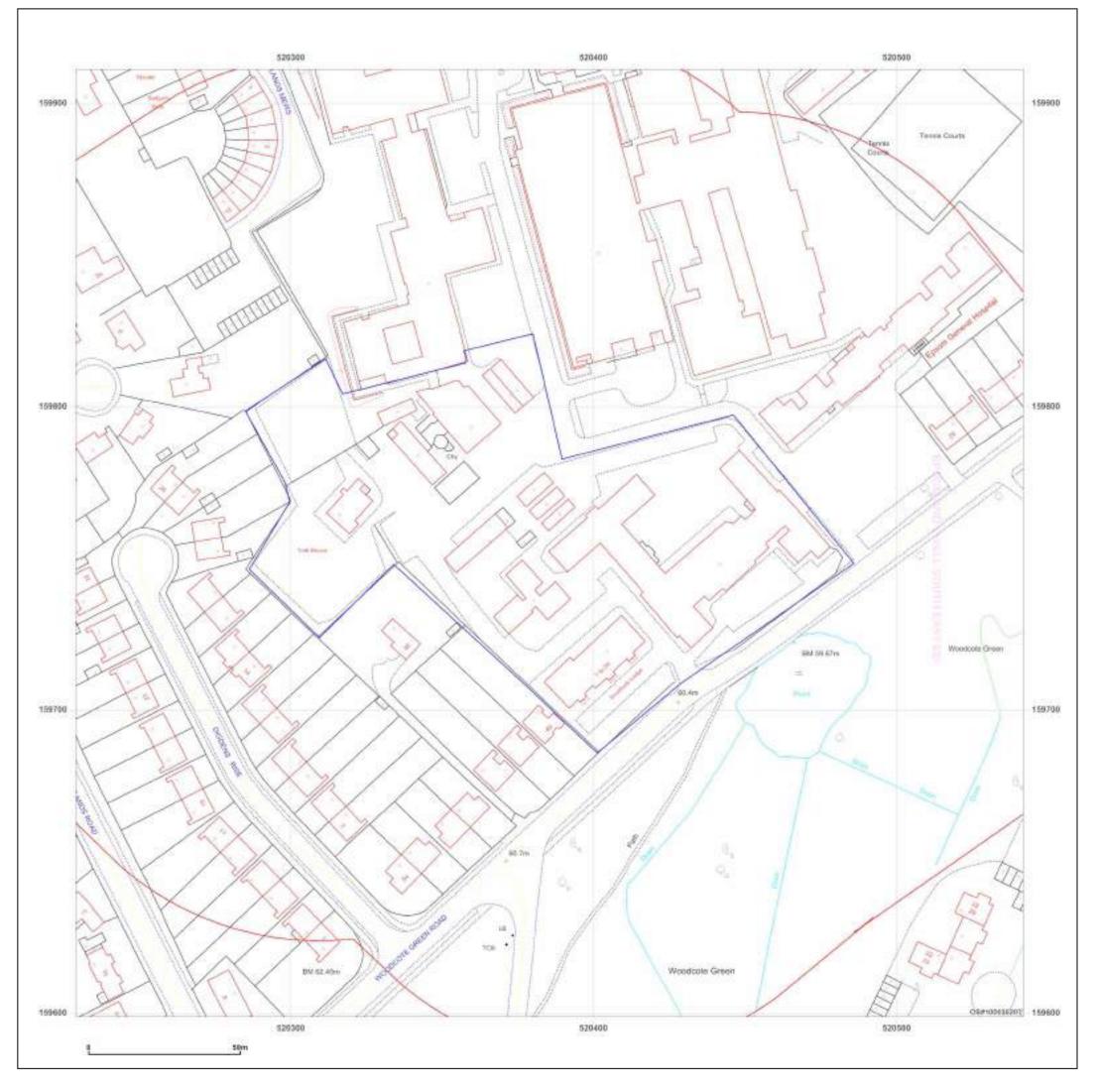
Produced by Groundsure Insights T: 08444 159000 E: info@groundsure.com W: www.groundsure.com

© Crown copyright and database rights 2018 Ordnance Survey 100035207

Production date: 23 August 2019

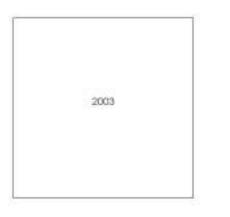
ROWAN HOUSE, EPSOM GENERAL HOSPITAL, DORKING ROAD, EPSOM, KT18 7EG

Client Ref: Report Ref: Grid Ref:	Epsom_Hospital_ GS-6266220 520385, 159755	
Map Name:	National Grid	Ν
Map date:	1992	W E
Scale:	1:1,250	
Printed at:	1:2,000	S



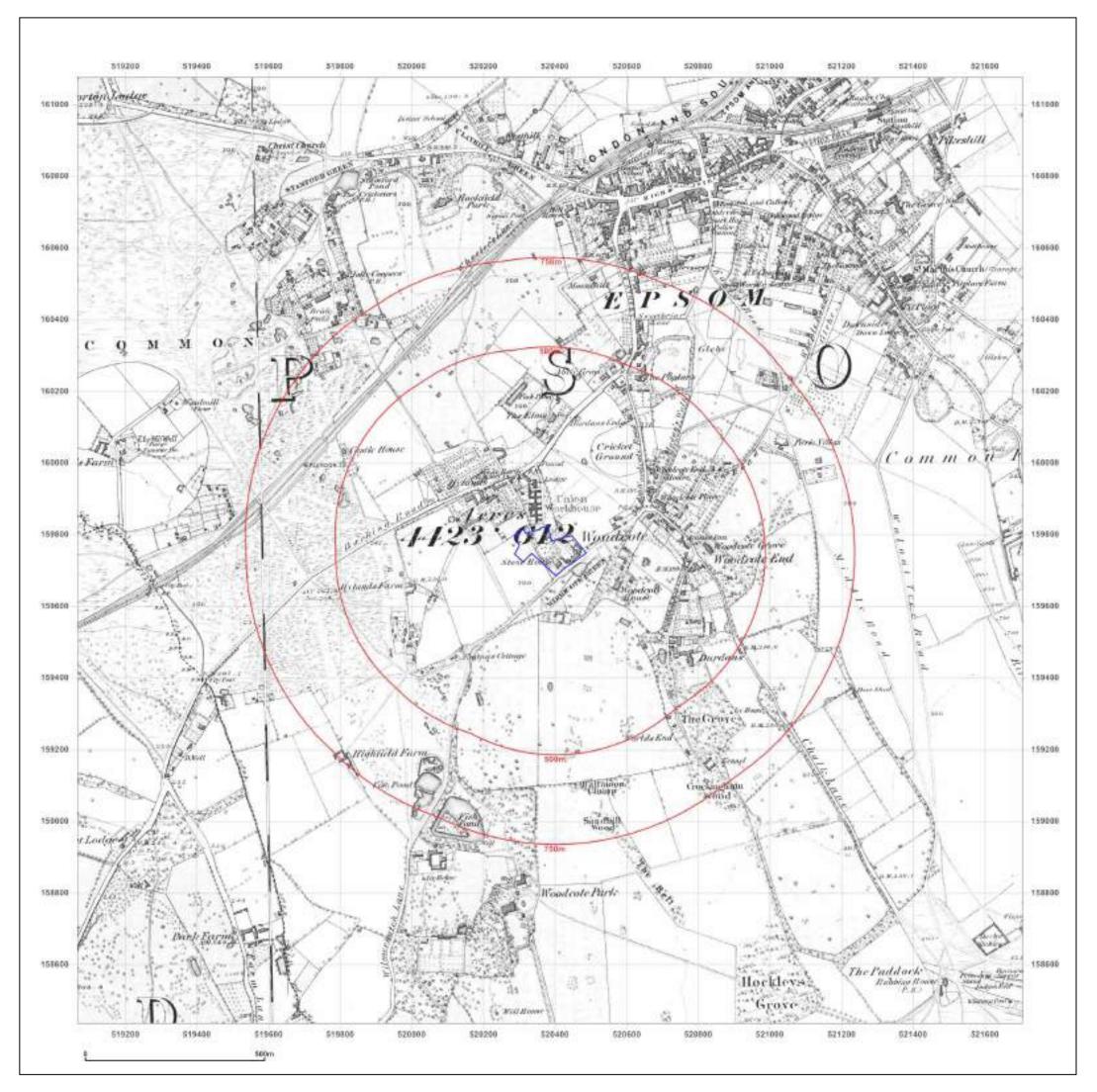
Produced by Groundsure Insights T: 08444 159000 E: info@groundsure.com W: www.groundsure.com

© Crown copyright and database rights 2018 Ordnance Survey 100035207

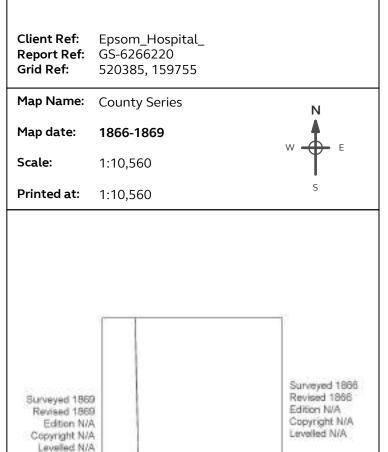

Production date: 23 August 2019

ROWAN HOUSE, EPSOM GENERAL HOSPITAL, DORKING ROAD, EPSOM, KT18 7EG

Client Ref: Report Ref: Grid Ref:	Epsom_Hospital_ GS-6266220 520385, 159755	
Map Name:	LandLine	Ν
Map date:	2003	W E
Scale:	1:1,250	
Printed at:	1:1,250	S

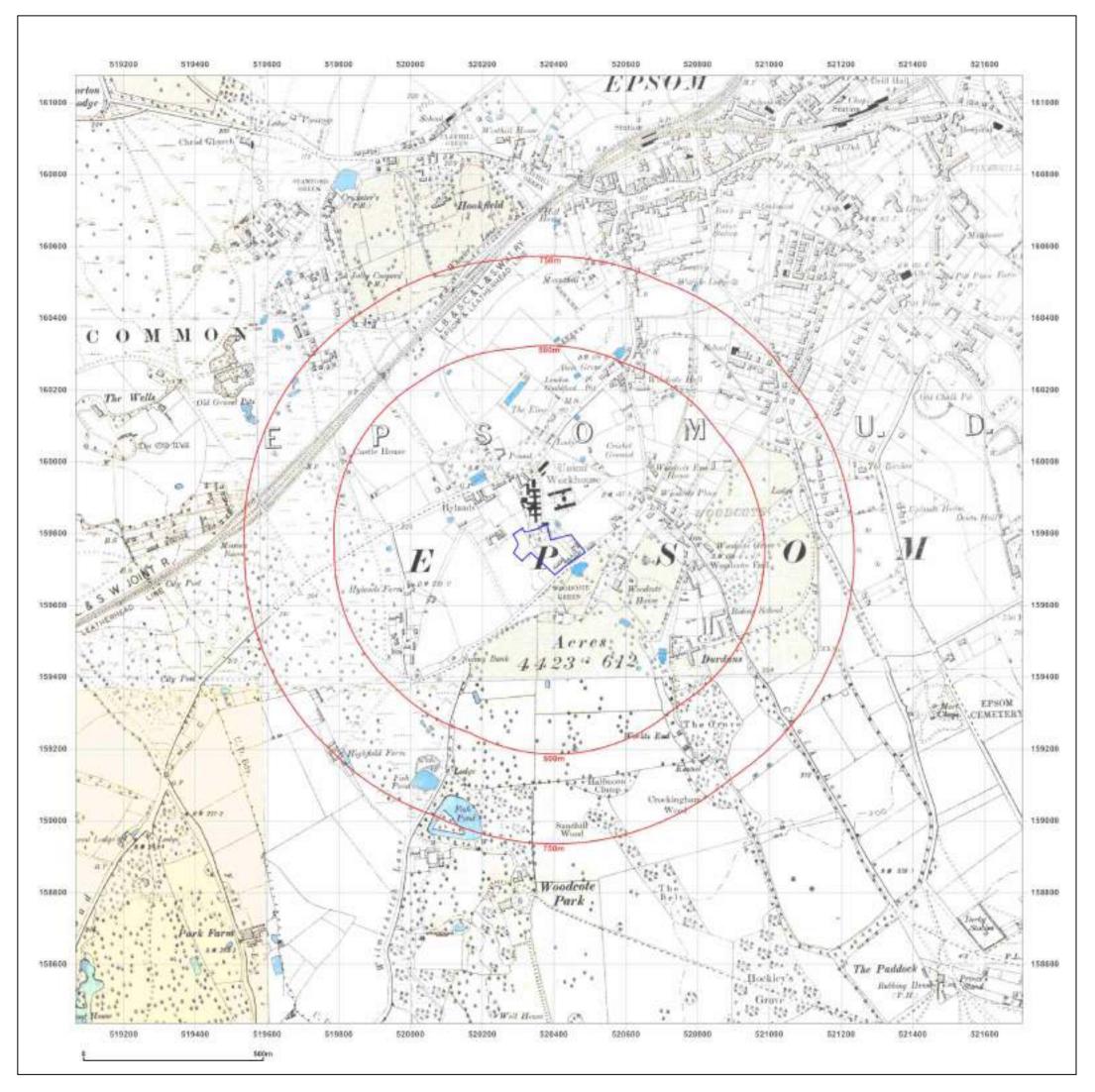


Produced by Groundsure Insights T: 08444 159000 E: info@groundsure.com W: www.groundsure.com

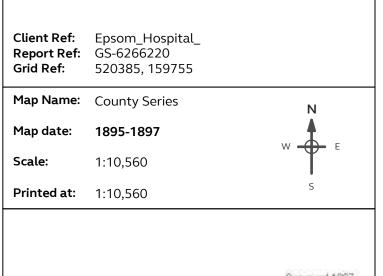

© Crown copyright and database rights 2018 Ordnance Survey 100035207

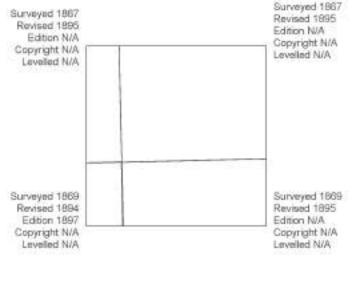
Production date: 23 August 2019

ROWAN HOUSE, EPSOM GENERAL HOSPITAL, DORKING ROAD, EPSOM, KT18 7EG

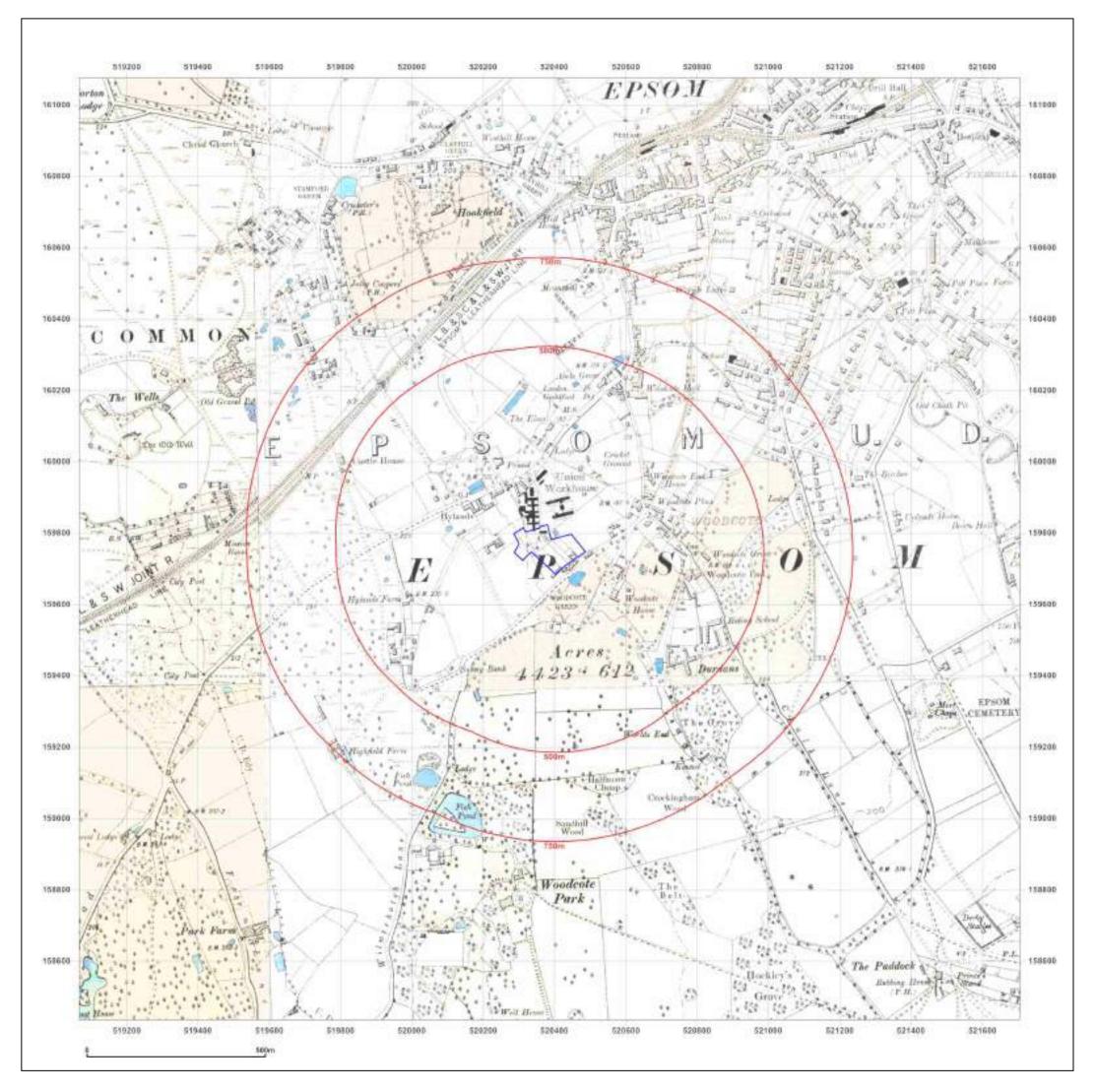


Produced by Groundsure Insights T: 08444 159000 E: info@groundsure.com W: www.groundsure.com

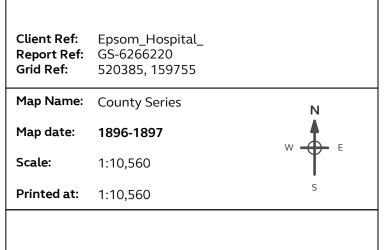

© Crown copyright and database rights 2018 Ordnance Survey 100035207

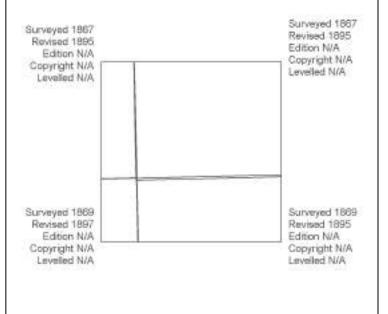

Production date: 23 August 2019

ROWAN HOUSE, EPSOM GENERAL HOSPITAL, DORKING ROAD, EPSOM, KT18 7EG

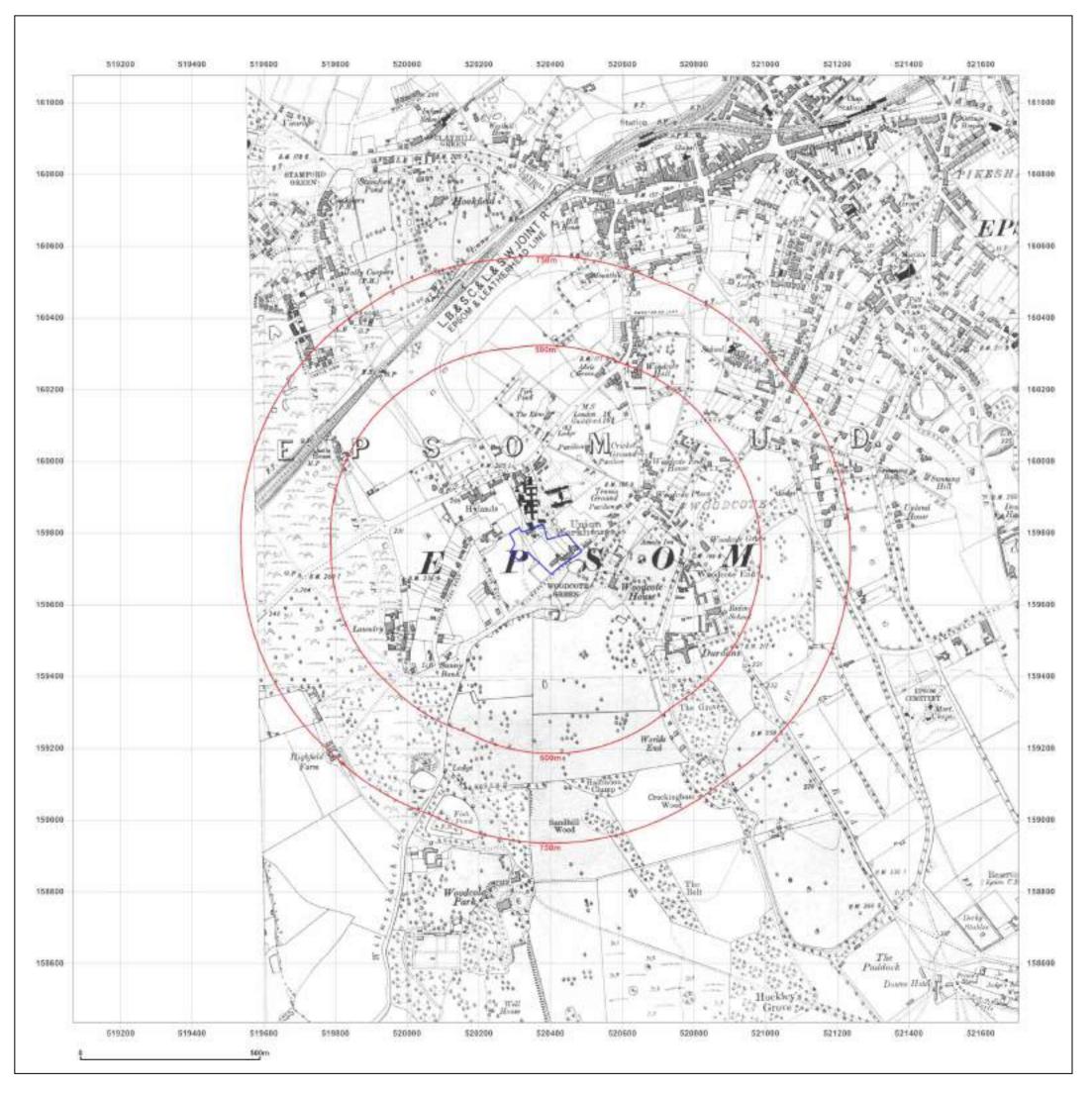


Produced by Groundsure Insights T: 08444 159000 E: info@groundsure.com W: www.groundsure.com

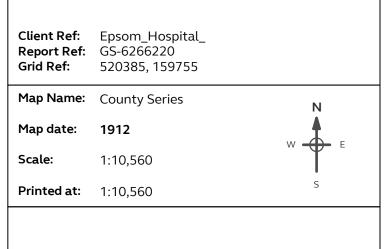

© Crown copyright and database rights 2018 Ordnance Survey 100035207


Production date: 23 August 2019

ROWAN HOUSE, EPSOM GENERAL HOSPITAL, DORKING ROAD, EPSOM, KT18 7EG

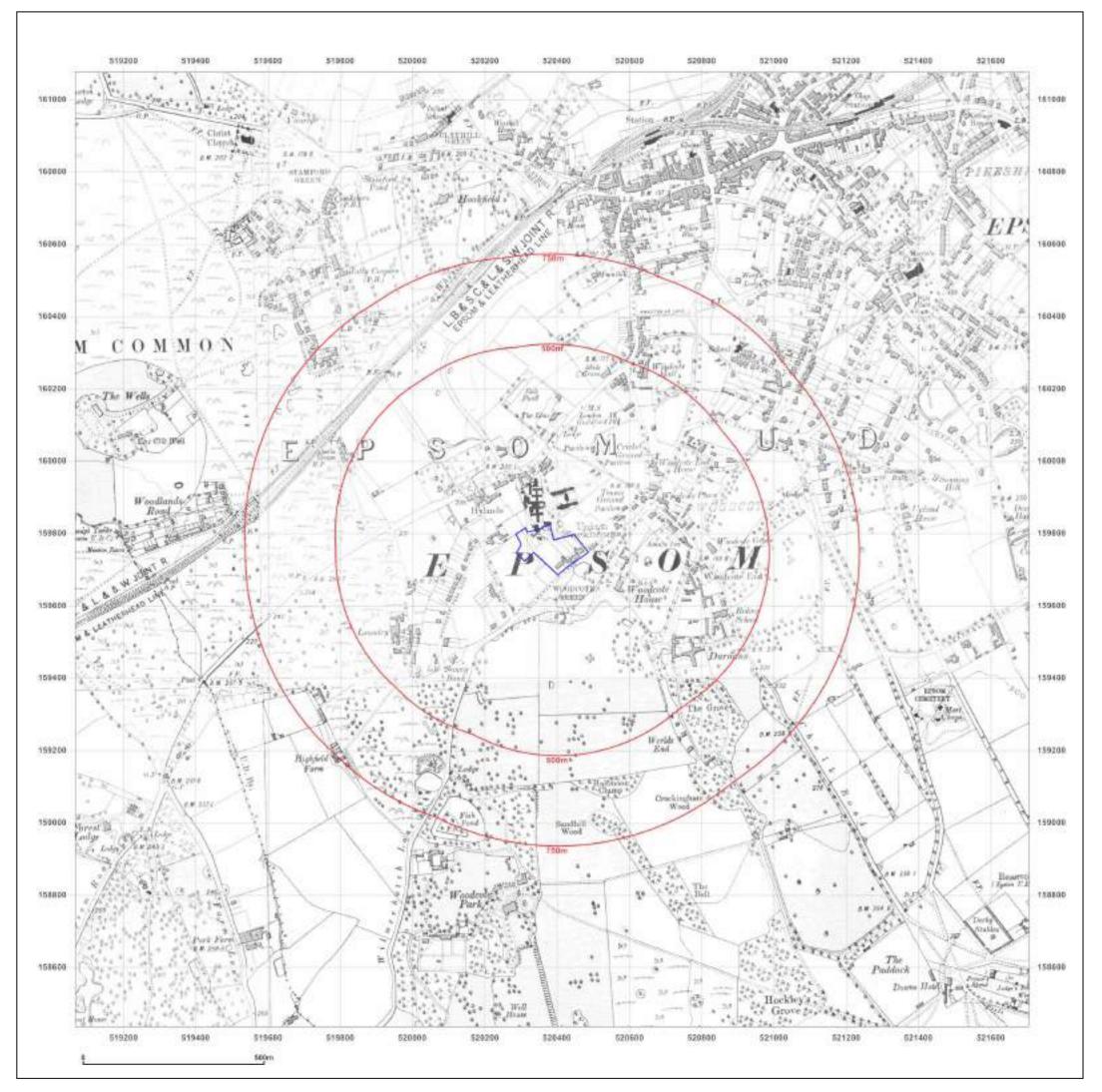


Produced by Groundsure Insights T: 08444 159000 E: info@groundsure.com W: www.groundsure.com

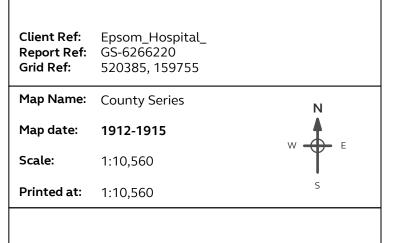

© Crown copyright and database rights 2018 Ordnance Survey 100035207

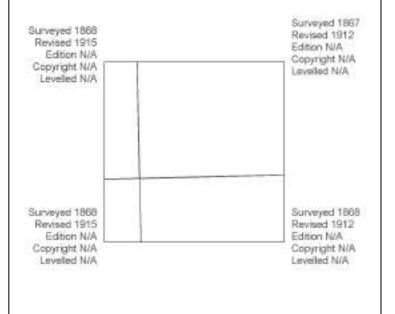
Production date: 23 August 2019

ROWAN HOUSE, EPSOM GENERAL HOSPITAL, DORKING ROAD, EPSOM, KT18 7EG

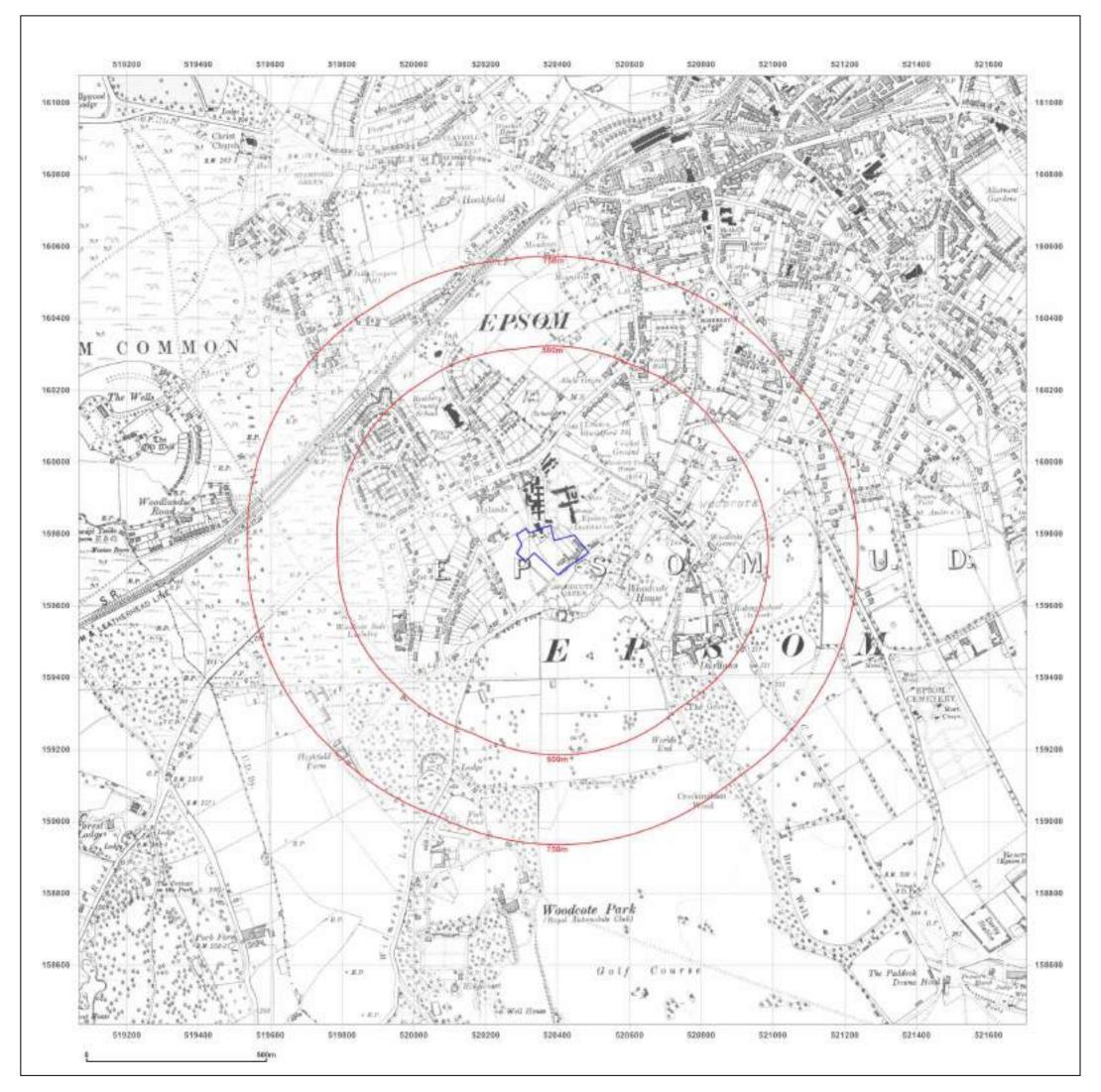

Surveyed 1867 Revised 1912 Edition N/A Copyright N/A Levelled N/A Surveyed 1868 Revised 1912 Edition N/A Copyright N/A Leveled N/A

Produced by Groundsure Insights T: 08444 159000 E: info@groundsure.com W: www.groundsure.com

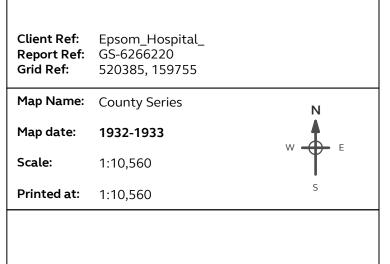

© Crown copyright and database rights 2018 Ordnance Survey 100035207

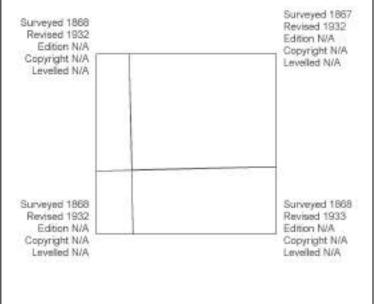

Production date: 23 August 2019

ROWAN HOUSE, EPSOM GENERAL HOSPITAL, DORKING ROAD, EPSOM, KT18 7EG

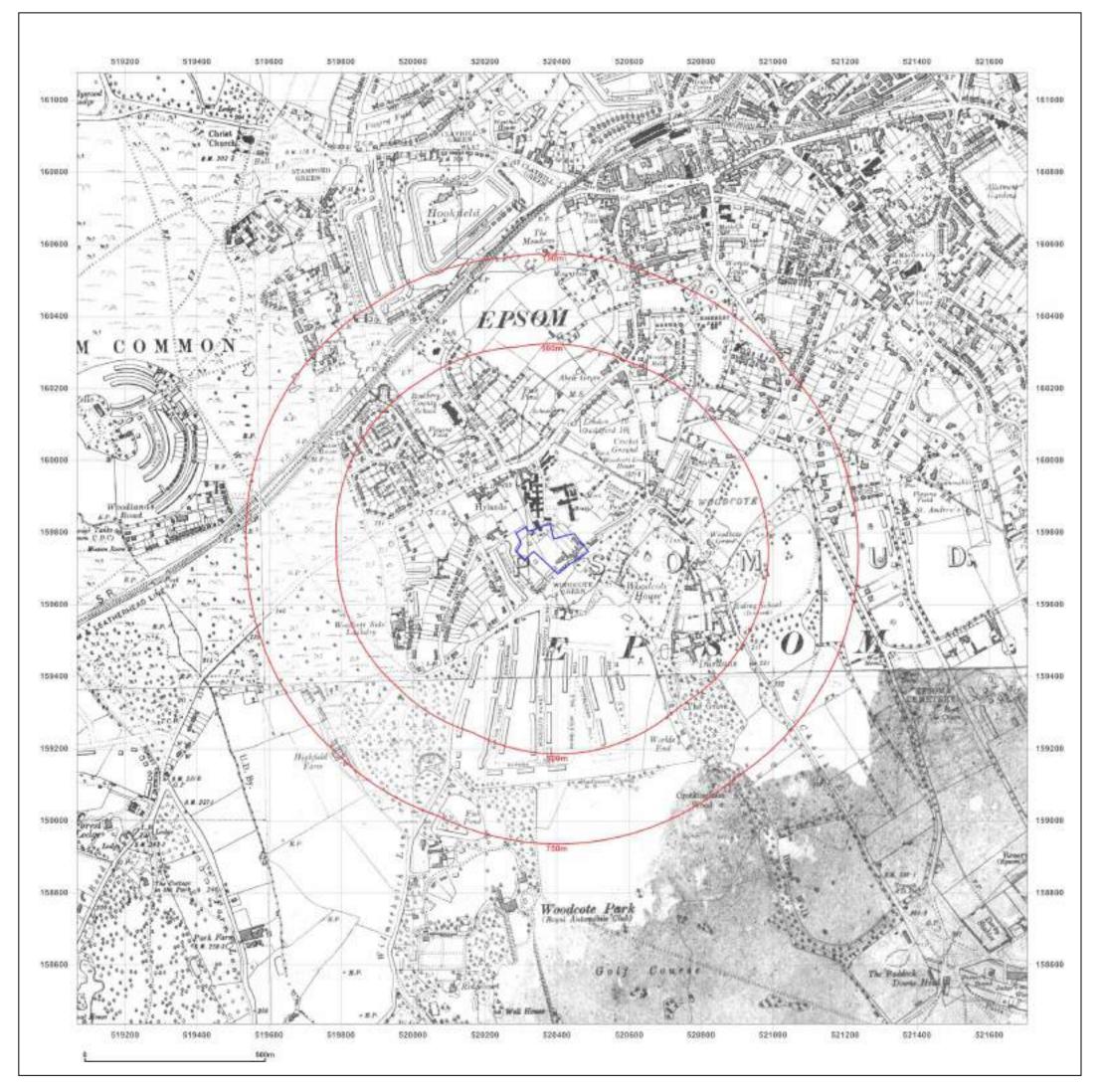


Produced by Groundsure Insights T: 08444 159000 E: info@groundsure.com W: www.groundsure.com

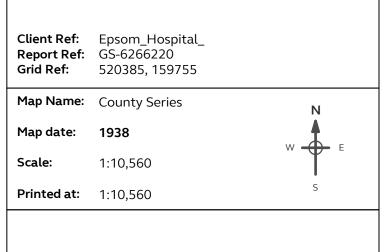

© Crown copyright and database rights 2018 Ordnance Survey 100035207

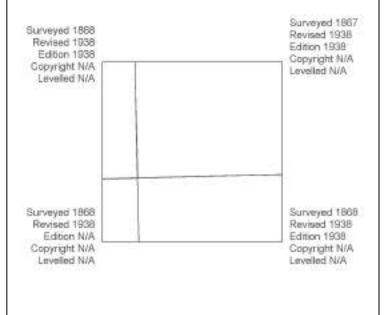

Production date: 23 August 2019

ROWAN HOUSE, EPSOM GENERAL HOSPITAL, DORKING ROAD, EPSOM, KT18 7EG

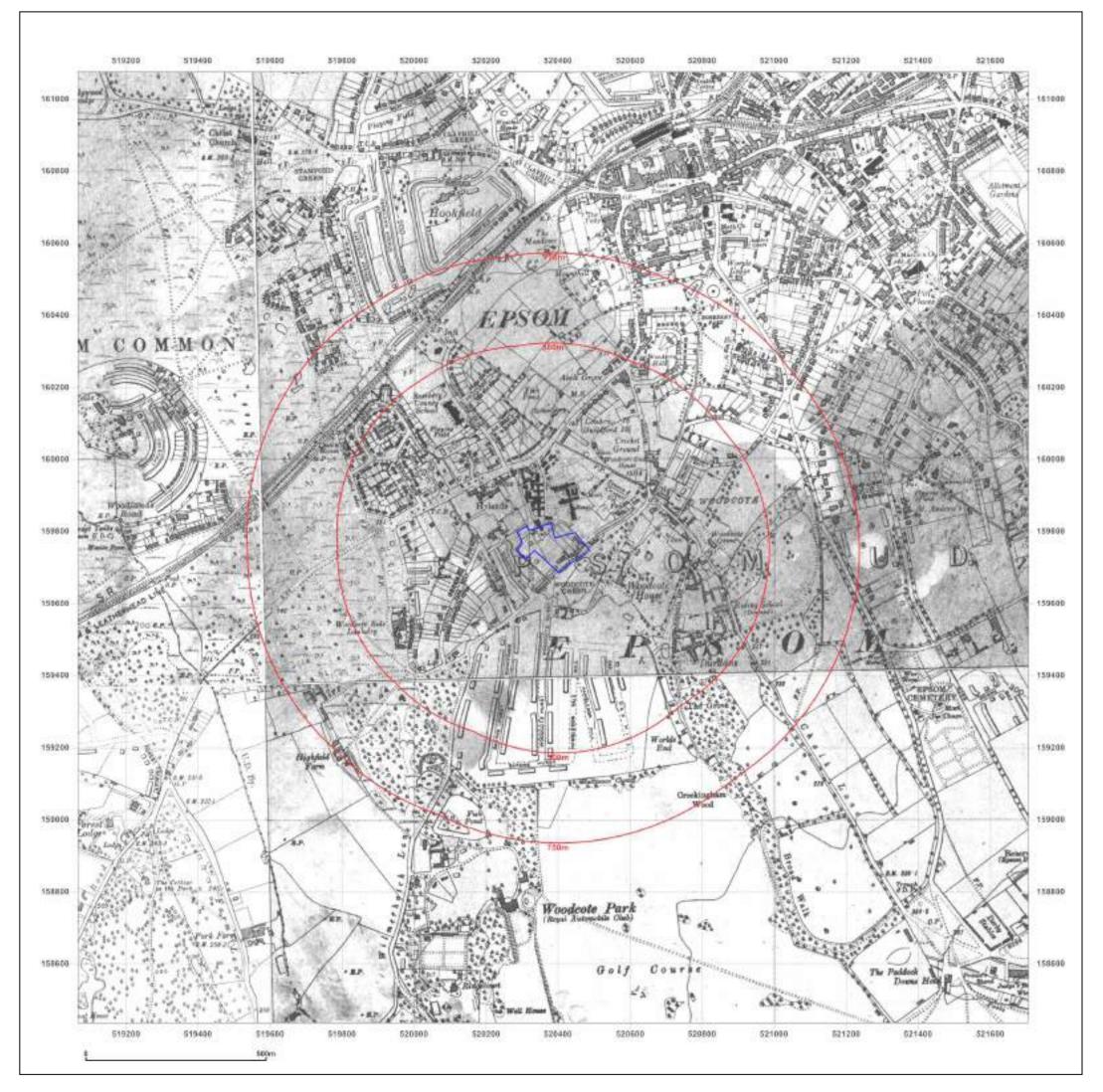


Produced by Groundsure Insights T: 08444 159000 E: info@groundsure.com W: www.groundsure.com


© Crown copyright and database rights 2018 Ordnance Survey 100035207


Production date: 23 August 2019

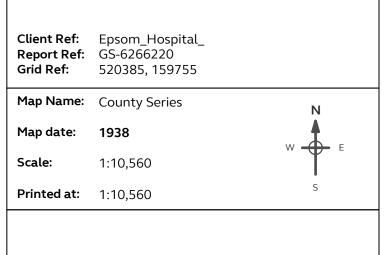
ROWAN HOUSE, EPSOM GENERAL HOSPITAL, DORKING ROAD, EPSOM, KT18 7EG

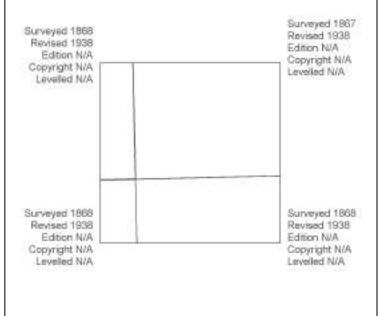


Produced by Groundsure Insights T: 08444 159000 E: info@groundsure.com W: www.groundsure.com

© Crown copyright and database rights 2018 Ordnance Survey 100035207

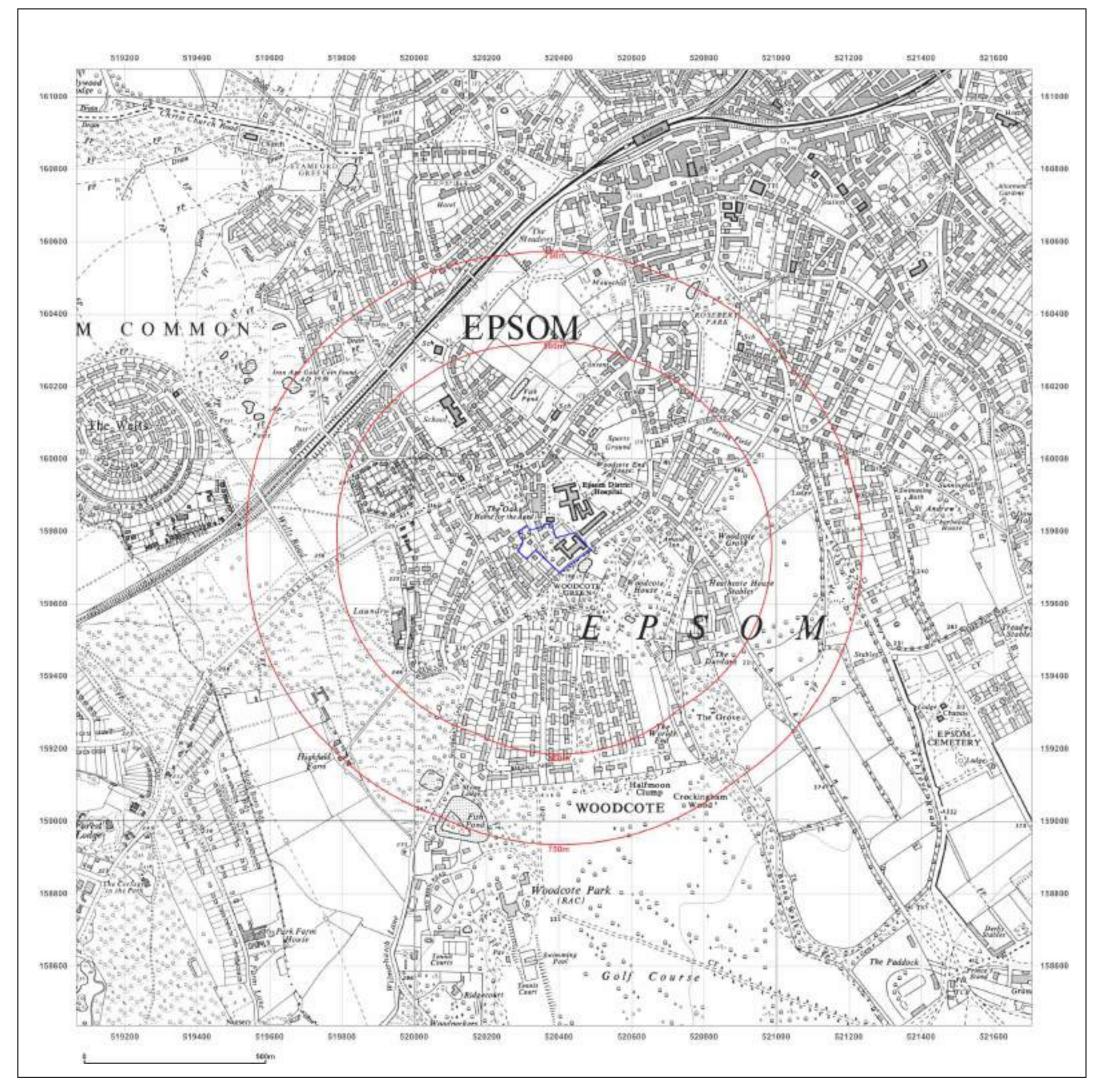
Production date: 23 August 2019




м

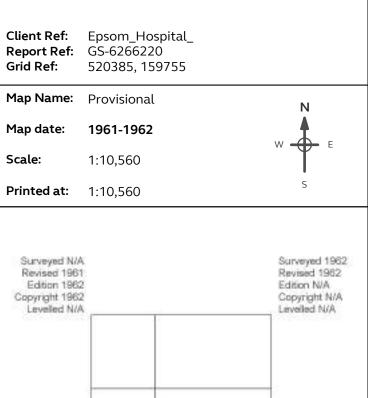
Site Details:

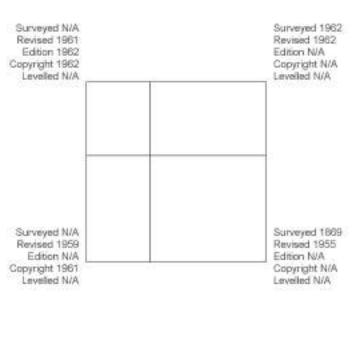
ROWAN HOUSE, EPSOM GENERAL HOSPITAL, DORKING ROAD, EPSOM, KT18 7EG



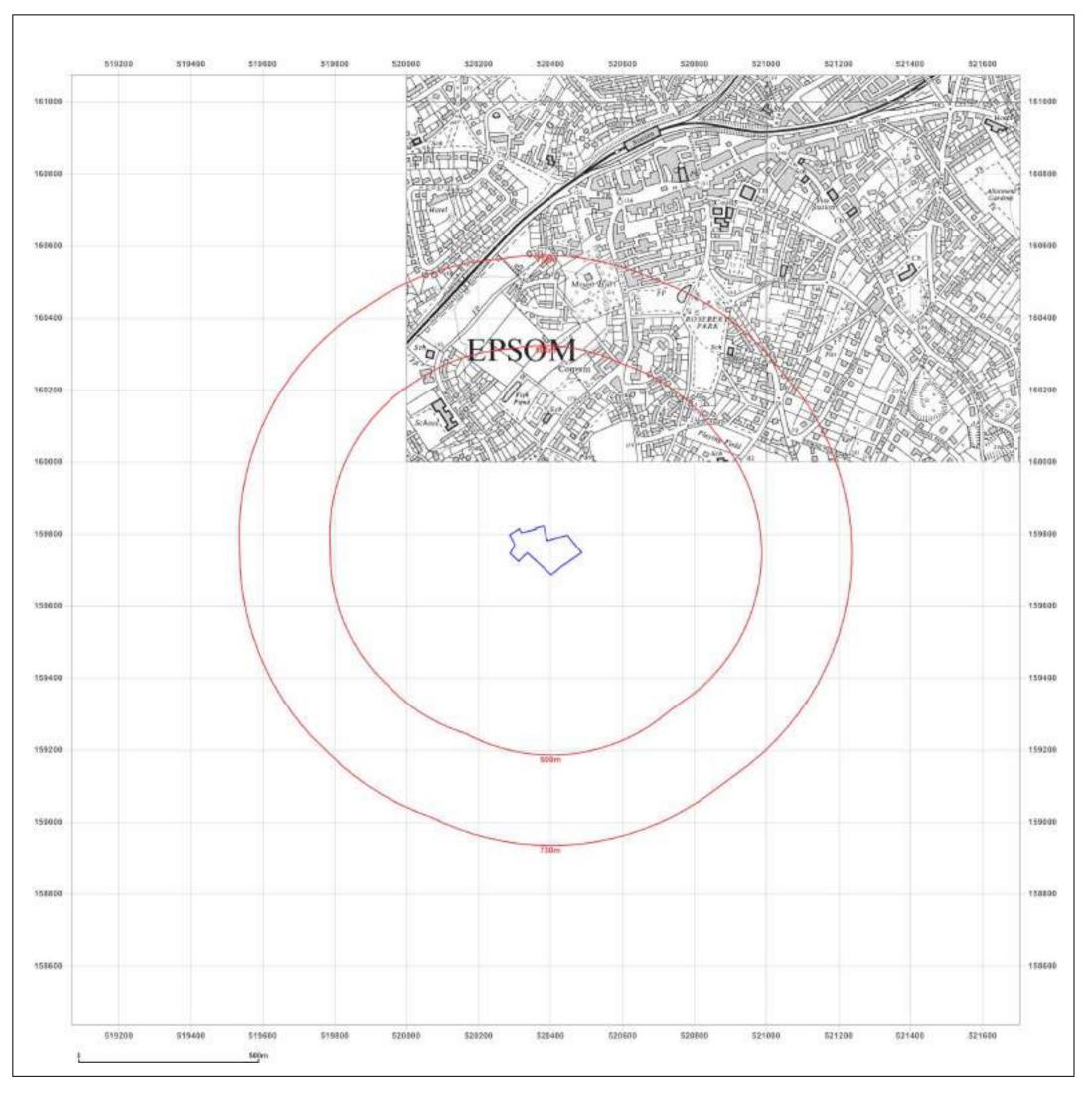
Produced by Groundsure Insights T: 08444 159000 E: <u>info@groundsure.com</u> W: www.groundsure.com

© Crown copyright and database rights 2018 Ordnance Survey 100035207

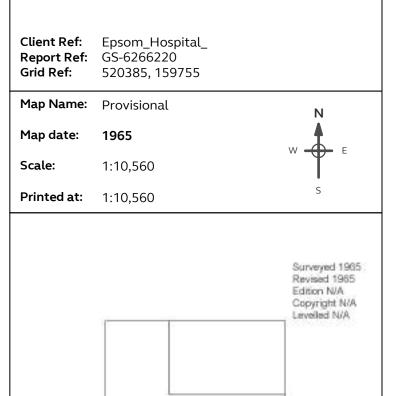

Production date: 23 August 2019


Map legend available at: www.groundsure_legend.pdf

ROWAN HOUSE, EPSOM GENERAL HOSPITAL, DORKING ROAD, EPSOM, KT18 7EG

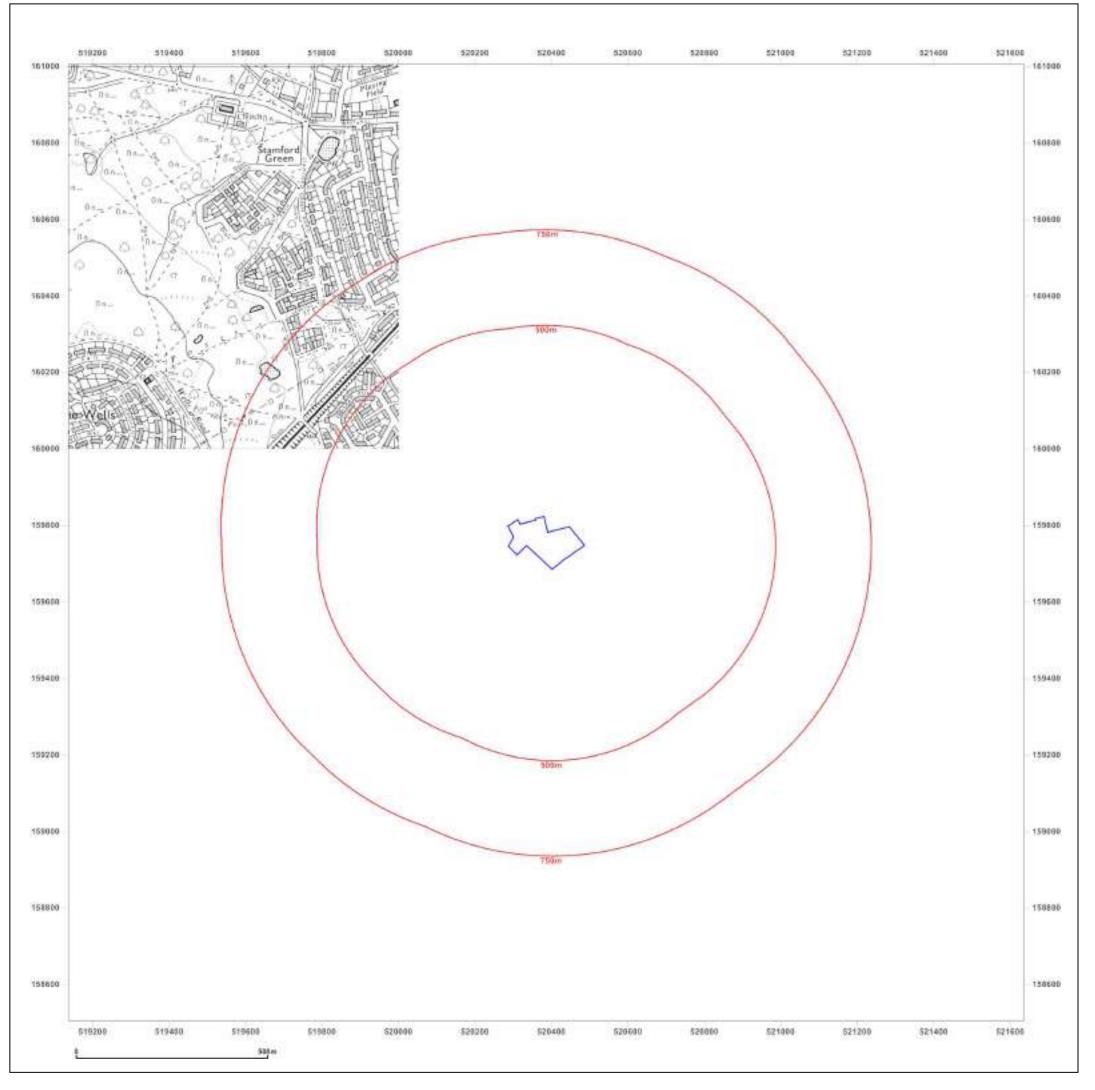


Produced by Groundsure Insights T: 08444 159000 E: info@groundsure.com W: www.groundsure.com

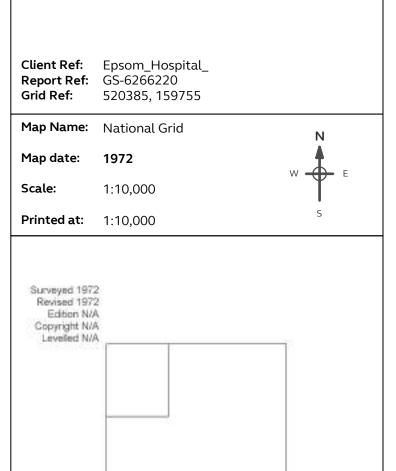

© Crown copyright and database rights 2018 Ordnance Survey 100035207

Production date: 23 August 2019

ROWAN HOUSE, EPSOM GENERAL HOSPITAL, DORKING ROAD, EPSOM, KT18 7EG

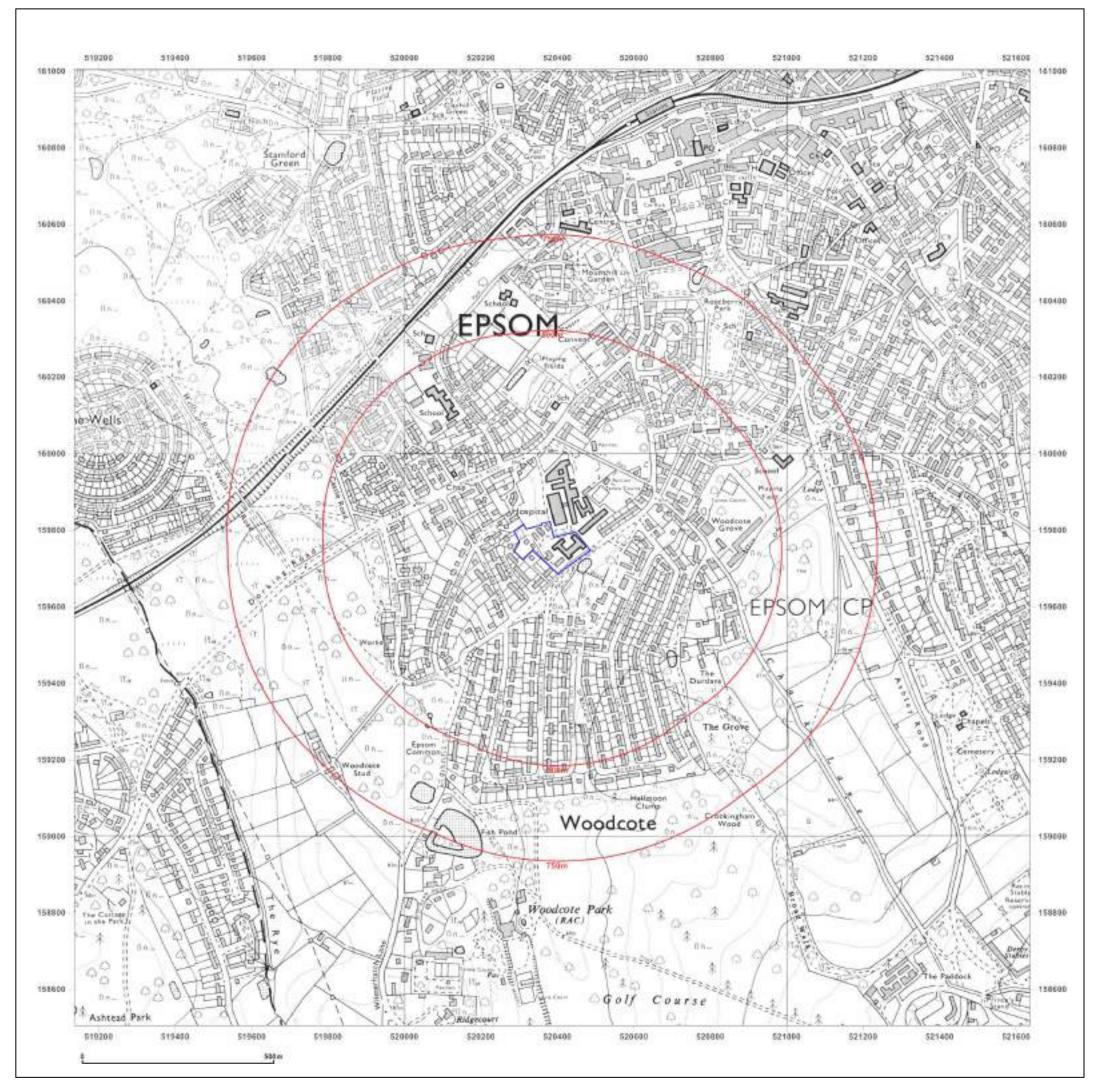


Produced by Groundsure Insights T: 08444 159000 E: info@groundsure.com W: www.groundsure.com

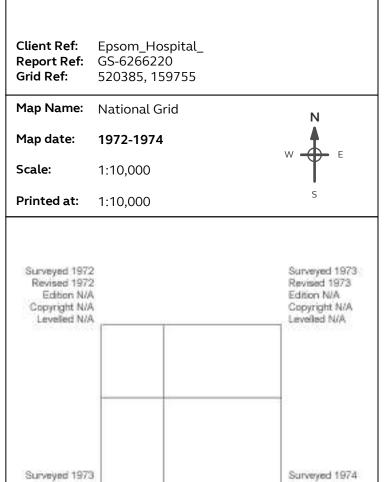

© Crown copyright and database rights 2018 Ordnance Survey 100035207

Production date: 23 August 2019

ROWAN HOUSE, EPSOM GENERAL HOSPITAL, DORKING ROAD, EPSOM, KT18 7EG



Produced by Groundsure Insights T: 08444 159000 E: info@groundsure.com W: www.groundsure.com

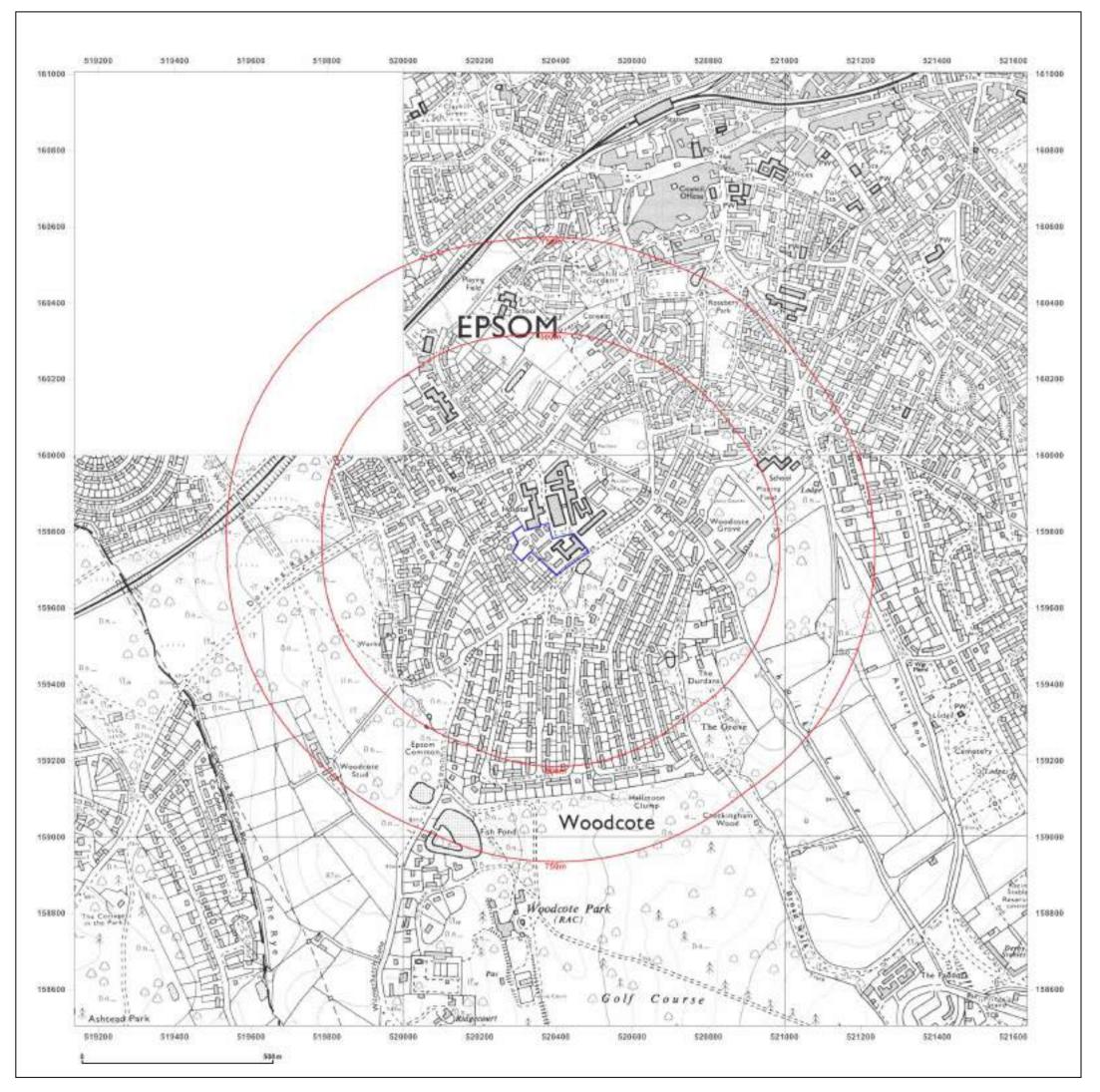

© Crown copyright and database rights 2018 Ordnance Survey 100035207

Production date: 23 August 2019

ROWAN HOUSE, EPSOM GENERAL HOSPITAL, DORKING ROAD, EPSOM, KT18 7EG

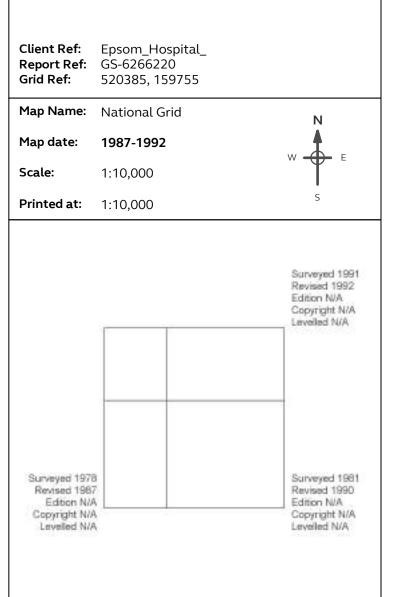
Surveyed 1974 Revised 1974 Edition N/A Copyright N/A Levelled N/A

Revised 1974


Copyright N/A Leveled N/A

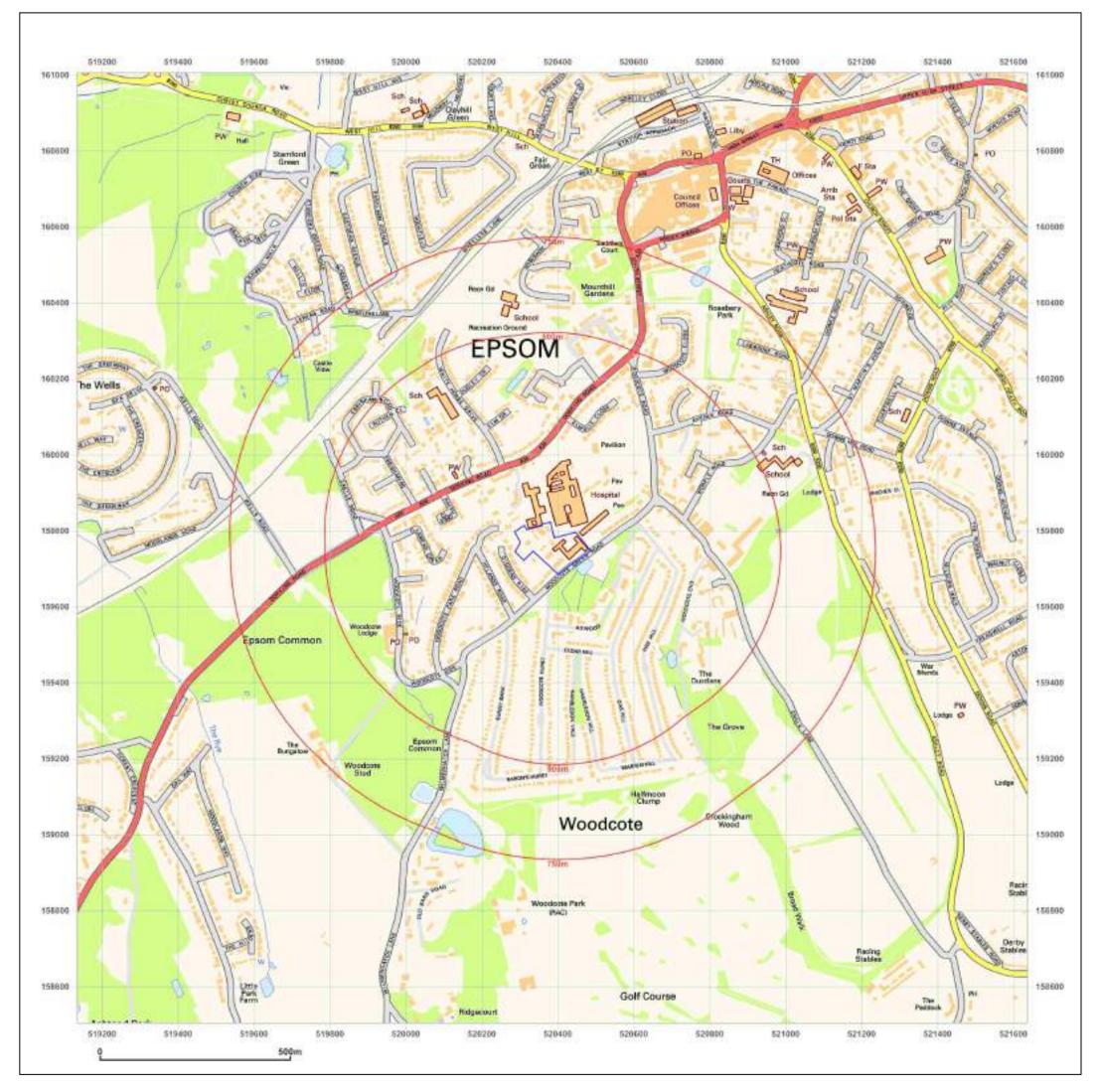
Edition N/A

Produced by Groundsure Insights T: 08444 159000 E: info@groundsure.com W: www.groundsure.com


© Crown copyright and database rights 2018 Ordnance Survey 100035207

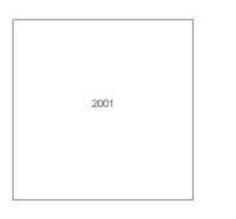
Production date: 23 August 2019

ROWAN HOUSE, EPSOM GENERAL HOSPITAL, DORKING ROAD, EPSOM, KT18 7EG



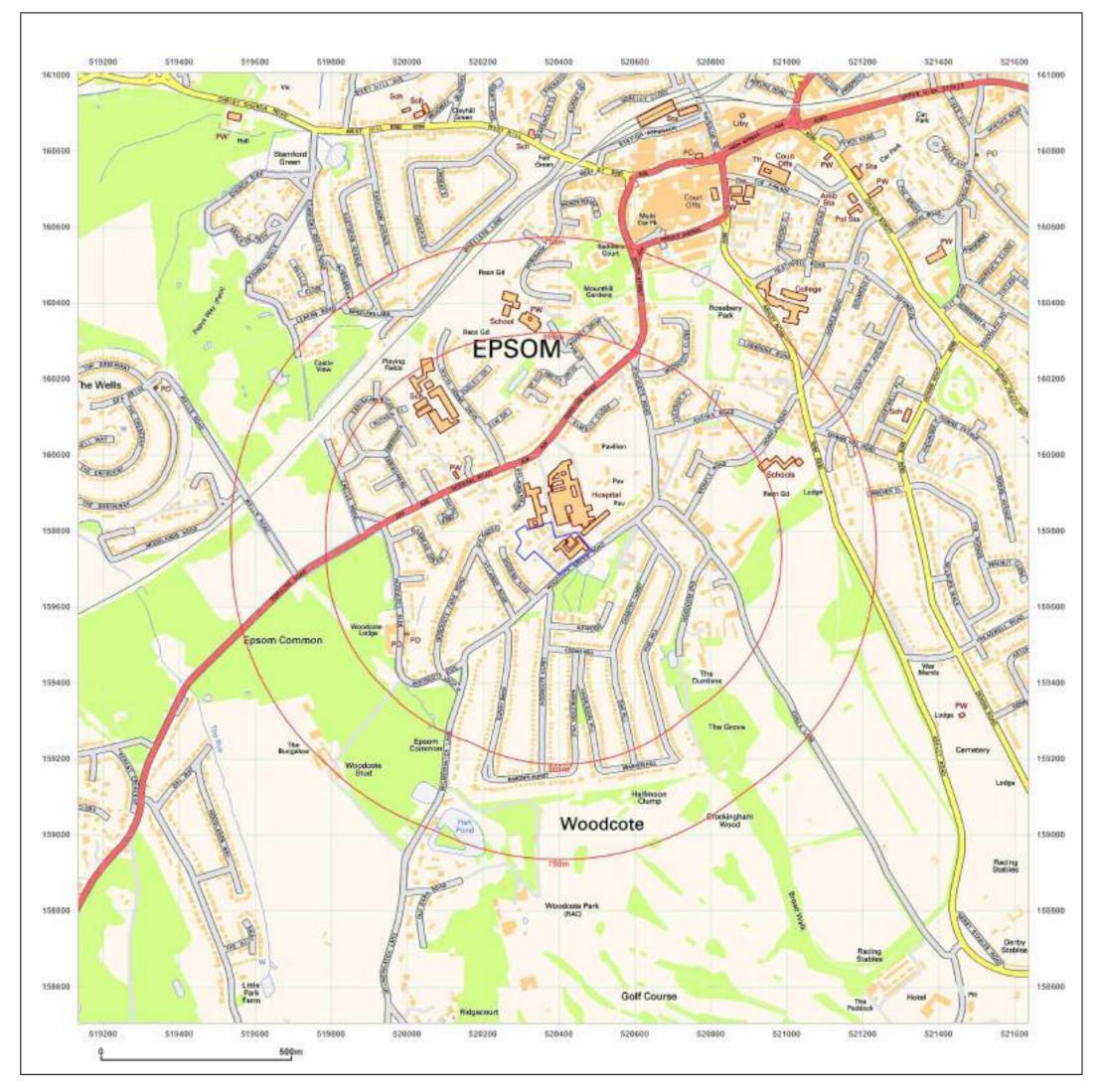
Produced by Groundsure Insights T: 08444 159000 E: info@groundsure.com W: www.groundsure.com

© Crown copyright and database rights 2018 Ordnance Survey 100035207


Production date: 23 August 2019

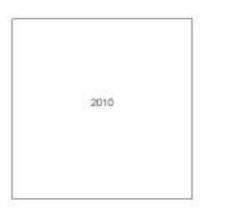
ROWAN HOUSE, EPSOM GENERAL HOSPITAL, DORKING ROAD, EPSOM, KT18 7EG

Client Ref: Report Ref: Grid Ref:	Epsom_Hospital_ GS-6266220 520385, 159755	
Map Name:	National Grid	N
Map date:	2001	W F
Scale:	1:10,000	T L
Printed at:	1:10,000	S



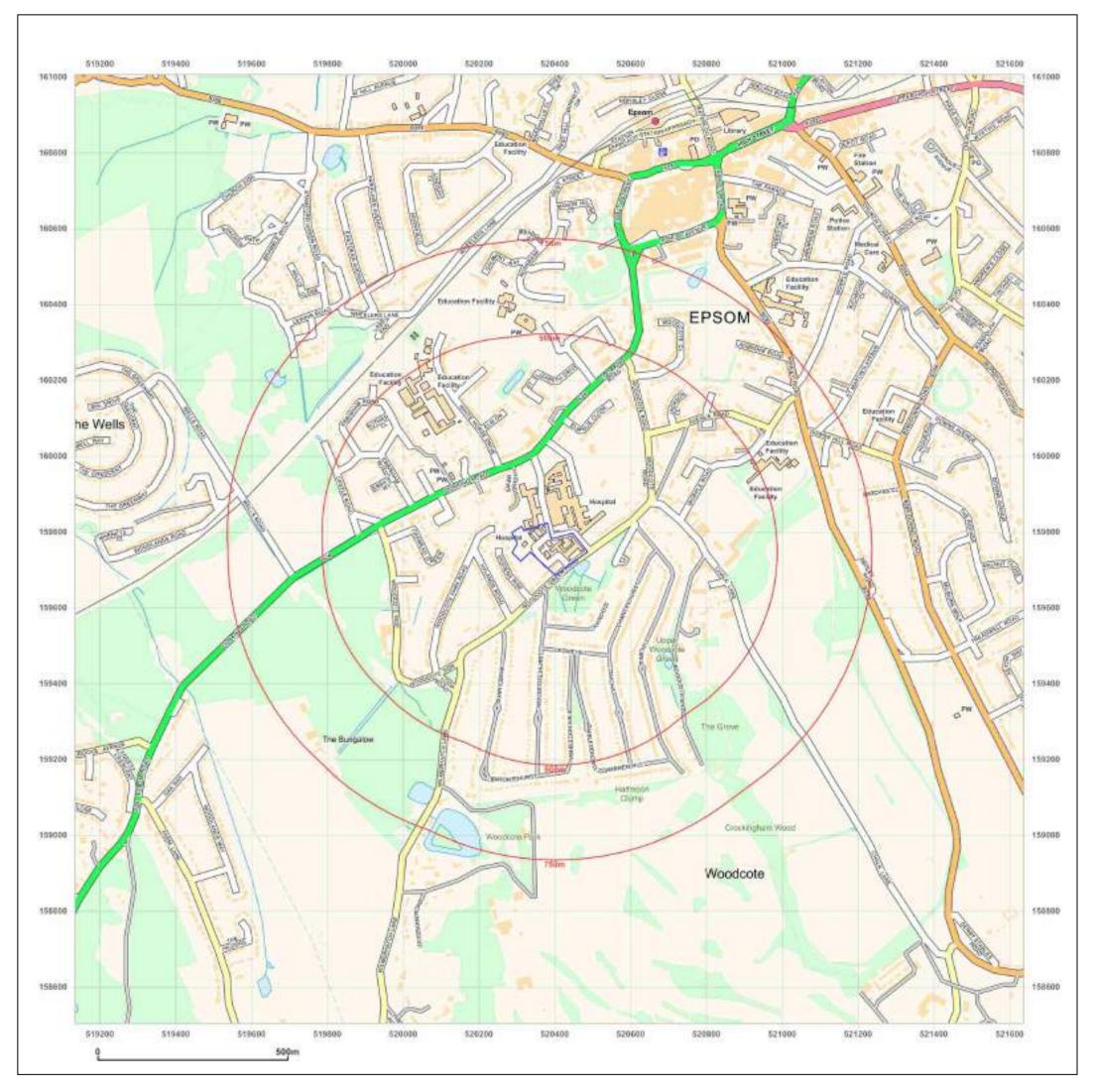
Produced by Groundsure Insights T: 08444 159000 E: info@groundsure.com W: www.groundsure.com

© Crown copyright and database rights 2018 Ordnance Survey 100035207


Production date: 23 August 2019

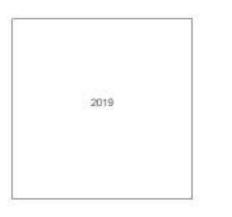
ROWAN HOUSE, EPSOM GENERAL HOSPITAL, DORKING ROAD, EPSOM, KT18 7EG

Client Ref: Report Ref: Grid Ref:	Epsom_Hospital_ GS-6266220 520385, 159755	
Map Name:	National Grid	N
Map date:	2010	W F
Scale:	1:10,000	
Printed at:	1:10,000	S



Produced by Groundsure Insights T: 08444 159000 E: info@groundsure.com W: www.groundsure.com

© Crown copyright and database rights 2018 Ordnance Survey 100035207


Production date: 23 August 2019

ROWAN HOUSE, EPSOM GENERAL HOSPITAL, DORKING ROAD, EPSOM, KT18 7EG

Client Ref: Report Ref: Grid Ref:	Epsom_Hospital_ GS-6266220 520385, 159755	
Map Name:	National Grid	Ν
Map date:	2019	W E
Scale:	1:10,000	
Printed at:	1:10,000	S

Produced by Groundsure Insights T: 08444 159000 E: info@groundsure.com W: www.groundsure.com

© Crown copyright and database rights 2018 Ordnance Survey 100035207

Production date: 23 August 2019

Appendix B

Local Authority Consultation Response

Rosie Holden

From:	Freedom of Information <foidpa@epsom-ewell.gov.uk></foidpa@epsom-ewell.gov.uk>
Sent:	01 November 2019 17:40
To:	Rosie Holden
Subject:	[External] EIR 093.19 - Contaminated Land Search - RESP
Follow Up Flag:	Follow up
Flag Status:	Flagged

Dear Ms Holden

I write in reply to your recent Environmental Information request; please find Epsom & Ewell Borough Council's response below:

Request

I am undertaking a preliminary contamination risk assessment for a site in Epsom and would like to include information from any records held by Epsom and Ewell Council. Are you able to provide a contaminated land search report for the site? If so, please advise the cost and the turnaround time of a report. If not, are there any other means by which I can obtain information held by the Council?

Part of the subject site is situated on the Epsom General Hospital complex, which is on our database of potentially contaminated sites (reference 03/00031/CLHIST) due to the fact that various potentially contaminative activities may be carried out at hospitals. We do not hold a contaminated land search for the site.

If you are unhappy with the way the Council has dealt with your request you do have the right to request a review; please contact me in the first instance. If, following the review, you remain dissatisfied, you may ask the Information Commissioner's Office to independently review the matter. The Information Commissioner's Office is an independent body that reports to Parliament. They monitor the Data Protection Act 2018 and the Freedom of Information Act 2000 and ensure organisations fulfil their legal responsibilities under the Acts. Details are available on: https://ico.org.uk/

Most of the information the Council provides in response to requests will be subject to copyright protection. This includes attachments. In most cases the copyright will be owned by Epsom & Ewell Borough Council. However, the copyright in some information may be owned by a third party. You are free to use any information supplied in this response for your own non-commercial research or private study purposes. The information may also be used for any other purpose allowed by a limitation or exception in copyright law, such as news reporting.

Except as permitted under the Copyright, Designs and Patents Act 1988, the information supplied may not be copied, distributed, published, or exploited for commercial purposes, financial gain or direct marketing. If you want to re-use the information provided and the Council is the copyright owner you must make an application to the Council under the Re-use of Public Sector Information Regulations 2015. Where the copyright is owned by a third party, you must obtain the third party's consent in order to re-use the information.

Yours sincerely

Good morning,

I am undertaking a preliminary contamination risk assessment for a site in Epsom and would like to include information from any records held by Epsom and Ewell Council.

Are you able to provide a contaminated land search report for the site? If so, please advise the cost and the turnaround time of a report. If not, are there any other means by which I can obtain information held by the Council?

Kind regards,

Rosie Holden Consultant | Environmental Consulting

-----Original Message-----From: Rosie Holden <Rosie.Holden@arup.com> Sent: 04 October 2019 10:38 To: ContactUs <contactus@epsom-ewell.gov.uk> Subject: RE: EEBC CRM:04382093

Hi Katie,

The site is located at Rowan House Epsom KT18 7DW. A figure showing the site boundary is attached.

Kind regards,

Rosie Holden Consultant | Environmental Consulting BSc (Hons), MSc, AMIEnvSc, MCIWEM, FRGS

Arup 13 Fitzroy Street London W1T 4BQ United Kingdom d: +44 20 7755 5968 m: +4479 6632 4481 www.arup.com Connect with me on LinkedIn

-----Original Message-----From: ContactUs <contactus@epsom-ewell.gov.uk> Sent: 04 October 2019 10:29 To: Rosie Holden <Rosie.Holden@arup.com> Subject: [External] EEBC CRM:04382093

Dear Miss Holden,

Thank you for your correspondence regarding a contaminated land search.

The information you are requesting would be classed as a freedom of information request, and we will aim to respond to your request no later than 20 working days upon receipt.

Please can you provide us with the site address , so that we can provide you with the correct information. With regards

Katie Randall Customer Services Tel: 01372 732000 Text: 07950 080202 Email: contactus@epsom-ewell.gov.uk<mailto:contactus@epsom-ewell.gov.uk>

The information contained in this message is confidential and may be legally privileged. The message is intended solely for the addressee(s). If you are not the intended recipient, you are hereby notified that any use, dissemination, or reproduction is strictly prohibited and may be unlawful. If you are not the intended recipient, please contact the sender by return e-mail and destroy all copies of the original message. Visit the Epsom and Ewell Borough Council website at http://secure-web.cisco.com/1JIrbPFs3_gmBAMqr5RMGHu-

5IzZoZcOg4ncwbG39OpwiwiX3DXHLsC_VXpEIIEchSDtIext1r1nMcQwk7cg5ajY406Kitx6wj5wR7YglPkiHCDd9R8LIHixLA62_txRPhbaKKoU9yaTv8qPVjCgXvZuzMfvCxtuZ0M9k3 wyG4kV2cp25Sy7rm5zly1WLwN-

TqeH1TkAgmniXa6R3SOZnFQhjdy6TnwjdvM1qcM5Ekx29KCMkxuDGVbCp5TuYepDufsrXAqvI6FcFM2xFd5xGLaV7GGPDbbWiqnbBvwTRL7xU1-37jrexk04Jpv0Jua8wnDBFASnDKycsnGtmEIVNQ/http%3A%2F%2Fwww.epsom-ewell.gov.uk

Electronic mail messages entering and leaving Arup business systems are scanned for viruses and acceptability of content.

The information contained in this message is confidential and may be legally privileged. The message is intended solely for the addressee(s). If you are not the intended recipient, you are hereby notified that any use, dissemination, or reproduction is strictly prohibited and may be unlawful. If you are not the intended recipient, please contact the sender by return e-mail and destroy all copies of the original message. Visit the Epsom and Ewell Borough Council website at www.epsom-ewell.gov.uk

2

Appendix C

Risk assessment methodology

C1 Risk assessment methodology

The potential risks to human health and environmental receptors have been considered in accordance with the current UK approach to contaminated land assessment taking into consideration the available information on the construction and operational phases of the development.

The method for risk evaluation takes into consideration the magnitude of the potential severity of the risk as well as the probability of the risk occurring. The risk characterisations have been assessed based on the qualitative method of interpretation set out in CIRIA guidance C552 [16] and NHBC/EA/CIEH risk classification methodology [17].

The method for risk evaluation involves the classification of the:

- magnitude of the potential consequence (severity) of the risk occurring (refer to Table C1-1); and
- magnitude of the probability (likelihood) of the risk occurring (refer to Table C1-2).

Classification	Definition		
Severe	Highly elevated concentrations likely to result in "significant harm" to hum health as defined by the EPA 1990, Part 2A, if exposure occurs.		
	Equivalent to Environment Agency Category 1 pollution incident including persistent and/or extensive effects on water quality; leading to closure of a potable abstraction point; major impact on amenity value or major damage to agriculture or commerce.		
	Major damage to aquatic or other ecosystems, which is likely to result in a substantial adverse change in its functioning or harm to a species of special interest that endangers the long-term maintenance of the population.		
	Catastrophic damage to buildings or property.		
	A short-term risk to an ecosystem, or organism forming part of such ecosystem.		
Medium	Elevated concentrations which could result in "significant harm" to human health as defined by the EPA 1990, Part 2A if exposure occurs.		
	Equivalent to Environment Agency Category 2 pollution incident including significant effect on water quality; notification required to abstractors; reduction in amenity value or significant damage to agriculture or commerce.		
	Significant damage to aquatic or other ecosystems, which may result in a substantial adverse change in its functioning or harm to a species of special interest that may endanger the long-term maintenance of the population.		
	Significant damage to crops, buildings or property.		
Mild	Exposure to human health unlikely to lead to "significant harm".		
	Equivalent to Environment Agency Category 3 pollution incident including minimal or short-lived effect on water quality; marginal effect on amenity value, agriculture or commerce.		
	Minor or short-lived damage to aquatic or other ecosystems, which is unlikely to result in a substantial adverse change in its functioning or harm to a species		

 Table C1-1
 Classification of consequence

Ground Contamination Preliminary Risk Assessment

Classification	Definition
	of special interest that would endanger the long-term maintenance of the population. Minor damage to crops, buildings or property.
Minor	No measurable effect on humans. Non-permanent effects to human health, which could easily be prevented by means such as standard personal protective clothing.
	Equivalent to insubstantial pollution incident with no observed effect on water quality or ecosystems.
	Repairable effects of damage to buildings, structures and services.

Table C1-2 Classification of probability

Classification	Definition
High likelihood	There is a pollution linkage and an event that either appears very likely in the short term and almost inevitable over the long-term, or there is evidence at the receptor of harm or pollution.
Likely	There is a pollution linkage and all the elements are present and in the right place, which means that it is probable that an event will occur. Circumstances are such that an event is not inevitable, but possible over the short term and likely over the long term.
Low likelihood	There is a pollution linkage and circumstances are possible under which an event could occur. However, it is not certain that such an event would take place.
Unlikely	There is a pollution linkage, but circumstances are such that it is improbable that an event would occur even in the very long term.

Table C1-3 presents the risk assessment matrix and Table C1-4 defines the risk classifications.

Table C1-3	Comparison	of conseq	uence against	probability

		Consequence			
		Severe	Medium	Mild	Minor
	High likelihood	Very high risk	High risk	Moderate risk	Low to moderate risk
bility	Likely	High risk	Moderate risk	Low to moderate risk	Low risk
Probability	Low likelihood	Moderate risk	Low to moderate risk	Low risk	Very low risk
	Unlikely	Low to moderate risk	Low risk	Very low risk	Very low risk

Risk classification	Description of risk
Very high	There is a high probability that severe harm could arise to a designated receptor from an identified pollutant linkage at the site without appropriate remediation action, or, there is evidence that severe harm to a designated receptor is currently happening.
	Realisation of that risk is likely to present a substantial liability to be site owner/or occupier. Investigation is required as a matter of urgency and remediation works likely to follow in the short-term.
High	Harm is likely to arise to a designated receptor from an identified pollutant linkage at the site without appropriate remediation action. Realisation of the risk is likely to present a substantial liability to the site owner/or occupier. Investigation is required as a matter of urgency to clarify the risk. Remediation works may be necessary in the short-term and are likely over the longer term.
Moderate	It is possible that harm could arise to a designated receptor from an identified hazard. However, it is either relatively unlikely that any such harm would be severe, and if any harm were to occur it is more likely, that the harm would be relatively mild. Further investigative work is normally required to clarify the risk and to determine the potential liability to site owner/occupier. Some remediation works may be required in the longer term.
Low	It is possible that harm could arise to a designated receptor from an identified pollutant linkage. It is likely that if any harm was realised, at worst any effects would be mild. It is unlikely that the site owner/or occupier would face substantial liabilities from such a risk. Further investigative work to clarify the risk may be required. Any subsequent remediation works are likely to be relatively limited.
Very low	The presence of an identified pollutant linkage does not give rise to the potential to cause harm to a designated receptor. It is a low possibility that harm could arise to a designated receptor, but it is likely at worst, that this harm if realised would normally be mild or minor.

Table C1-4 Risk classifications

Appendix D

Arcadis Epsom Hospital - Plot 2A Report

EPSOM HOSPITAL - MAIN HOSPITAL SITE

Phase 2 Geo-Environmental and Geotechnical Assessment Report

OCTOBER 2018

CONTACTS

GEMMA FRANCIS Principal Geo-Environmental Consultant

m +44 (0)7590 000223 e gemma.francis@arcadis.com Arcadis.

Level 1 2 Glass Wharf Temple Quay Bristol BS2 0FR

Arcadis (UK) Limited is a private limited company registered in England registration number: 1093549. Registered office, Arcadis House, 34 York Way, London, N1 9AB. Part of the Arcadis Group of Companies along with other entities in the UK. Regulated by RICS.

Epsom Hospital - Main Hospital Site

Phase 2 Geo-Environmental and Geotechnical Assessment Report

Author	Andrew Watts
Checker	Gemma Francis
Approver	George Flower
Report No	10020221-ARC-XX-XX-RP-ZZ-0008-01
Date	OCTOBER 2018

VERSION CONTROL

Version	Date	Author	Changes
001	23rd October 2018	AW	Rev 01 for issue

This report dated 23 October 2018 has been prepared for Epsom and St Helier University Hospitals NHS Trust (the "Client") in accordance with the terms and conditions of appointment dated 04 July 2018 (the "Appointment") between the Client and **Arcadis (UK) Limited** ("Arcadis") for the purposes specified in the Appointment. For avoidance of doubt, no other person(s) may use or rely upon this report or its contents, and Arcadis accepts no responsibility for any such use or reliance thereon by any other third party.

CONTENTS

1	INTRODUCTION1
1.1	Terms of Reference1
1.2	Proposed Development1
1.3	Previous Reports1
1.4	Report Objectives1
1.5	Limitations2
2	SITE SETTING AND PRELIMINARY CONCEPTUAL SITE MODEL
2.1	Site Location and Description
2.2	Environmental Setting5
2.2.1	Geology, Hydrogeology and Hydrology5
2.2.2	Site History7
2.2.3	Potentially Contaminative Land Uses7
2.2.4	Radon7
2.2.5	Unexploded Ordnance (UXO)7
0.0	Preliminary Conceptual Site Model
2.3	r reminiary conceptual Site Model
3	SITE INVESTIGATION
3	SITE INVESTIGATION
3 3.1	SITE INVESTIGATION
3 3.1 3.2	SITE INVESTIGATION
3 3.1 3.2 3.3	SITE INVESTIGATION
3.1 3.2 3.3 3.3.1	SITE INVESTIGATION 11 Scope of Works 11 General 11 Exploratory Holes 12 Exploratory Hole Locations 12
3.1 3.2 3.3 3.3.1 3.3.1 3.3.2	SITE INVESTIGATION 11 Scope of Works 11 General 11 Exploratory Holes 12 Exploratory Hole Locations 12 Investigation Methodology 12
3.1 3.2 3.3 3.3.1 3.3.2 3.3.2 3.3.2	SITE INVESTIGATION 11 Scope of Works 11 General 11 Exploratory Holes 12 Exploratory Hole Locations 12 Investigation Methodology 12 Cable Percussive Boring 13
3.1 3.2 3.3 3.3.1 3.3.2 3.3.2 3.3.3 3.3.4	SITE INVESTIGATION 11 Scope of Works 11 General 11 Exploratory Holes 12 Exploratory Hole Locations 12 Investigation Methodology 12 Cable Percussive Boring 13 Dynamic Sampling 14
3.1 3.2 3.3 3.3.1 3.3.2 3.3.3 3.3.4 3.4	SITE INVESTIGATION 11 Scope of Works 11 General 11 Exploratory Holes 12 Exploratory Hole Locations 12 Investigation Methodology 12 Cable Percussive Boring 13 Dynamic Sampling 14 In Situ Testing 14
3.1 3.2 3.3 3.3.1 3.3.2 3.3.3 3.3.4 3.4 3.4.1	SITE INVESTIGATION 11 Scope of Works 11 General 11 Exploratory Holes 12 Exploratory Hole Locations 12 Investigation Methodology 12 Cable Percussive Boring 13 Dynamic Sampling 14 In Situ Testing 14 Standard Penetration Tests 14
3.1 3.2 3.3 3.3.1 3.3.2 3.3.3 3.3.4 3.4 3.4.1 3.4.2	SITE INVESTIGATION 11 Scope of Works 11 General 11 Exploratory Holes 12 Exploratory Hole Locations 12 Investigation Methodology 12 Cable Percussive Boring 13 Dynamic Sampling 14 In Situ Testing 14 VOC Head Space Screening 15

4	GROUND CONDITIONS	17
4:1	Encountered Geology	17
4.2	Groundwater	18
4.3	Visual and Olfactory Evidence of Contamination	20
4:4	Geotechnical Parameters	20
4.4.1	Made Ground	20
4.4.2	River Terrace Deposits	20
4.4.3	London Clay	21
4.4.4	Lambeth Group	23
5	GEO-ENVIRONMENTAL ASSESSMENT	27
5:1	Soil Screening Values (SSVs)	27
5:2	Tier 1 Screening Assessment	27
5.2.1	Asbestos	27
5.2.2	Exceedances of SSVs in Made Ground Samples	27
5.2.3	Exceedances of SSVs in Natural Soil Samples	28
5:3	Controlled Waters Risk Assessment	28
5.3.1	Water Quality Standards	28
5.3.2	Screening Assessment	29
5.3.3	Metals	29
5.4	Ground Gas Risk Assessment	29
5.4.1	Gas Monitoring Methodology	29
5.4.2	Atmospheric Pressure	29
5.4.3	Gas Monitoring Results	30
5:5	Preliminary Gas Hazard Assessment	31
5.5.1	Methane and Carbon Dioxide	31
5.5.2	Carbon Monoxide	32
6	OTHER DEVELOPMENT CONSIDERATIONS	33
6:1	Material Management	33
6.2	Excess Arisings	33
6:3	Health, Safety & Environment	33
6.4	Built Environment Risk Assessment	34
7	CONCEPTUAL MODEL – POLLUTANT LINKAGES	
7.4	Risk Assessment Methodology	35

7.2	Contaminant Sources	35
7.3	Pathways and Receptors	36
7.4	Contaminant Linkages – Conceptual Model	36
7.5	Contaminant Linkages – Pollutant Linkages Discussion	39
8	GEOTECHNICAL ASSESSMENT	40
8.1	General	40
8.2	Ground Conditions	40
8.3	Obstructions	40
8.4	Foundations	40
8.4.1	Area A – Multi-storey Car Park & Connecting Footbridge	40
8.4.2	Area B – 3 Storey Modular Building	41
8.4.3	Area C – Single Storey Extension	41
8.4.4	Area D – Single Storey Extension	41
8.5	Foundations – General Comments	42
8:6	Ground Floor Slabs	42
8.7	Excavations	42
8.8	Pavement and Road Design	42
8.9	Aggressive Chemical Environment for Below Ground Concrete	43
9	CONCLUSIONS AND RECOMMENDATIONS	44
9:1	Geo-Environmental	44
9.1.1	Human Health	44
9.1.2	Controlled Waters	44
9.2	Geotechnical	44
10	REFERENCES	46

APPENDICES

APPENDIX A - EXPLORATORY HOLE LOCATION PLAN

- **APPENDIX B STANDARD PROCEDURES**
- **APPENDIX C EXPLORATORY HOLE LOGS**
- **APPENDIX D CERTIFICATION OF FIELD APPARATUS**
- **APPENDIX E MONITORING DATA**
- **APPENDIX F GEOTECHNICAL LABORATORY TESTING DATA**
- **APPENDIX G GEO-ENVIRONMENTAL LABORATORY DATA**
- **APPENDIX H GEO-ENVIRONMENTAL RISK ASSESSMENT INFORMATION**

1 Introduction

1.1 Terms of Reference

Arcadis Consulting (UK) Limited (Arcadis) was instructed by Epsom and St Helier University Hospitals NHS Trust 'the Client' on 4th July 2018 to undertake to undertake an intrusive site investigation to support the design considerations relating to the re-development of several areas of the 'Main Hospital Site' at Epsom General Hospital, Epsom (the 'Site').

An intrusive ground investigation was recommended to better characterise the potential risk levels, associated with both contamination and geotechnical constraints, and establish a land quality baseline for the site.

1.2 Proposed Development

The proposed development includes a multi-storey car park, connecting footbridge, single or double storey extensions to two buildings, and construction of a three-storey modular building. The use of the Site will remain as a functioning hospital.

The Phase 2 Geo-environmental and Geotechnical Assessment Report herein has been formulated to inform design considerations and to assist with supporting the discharge of future environmental planning conditions associated with the various redevelopment plans. This report provides an assessment of the ground conditions and contaminated land constraints, and provides a quantitative understanding of the land quality in order to better inform the requirement for potential remediation and/or mitigation associated with redevelopment of the site.

It is understood that land adjacent to the site, known as Plot 2A, is to be sold for redevelopment for residential premises. Plot 2A has been assessed separately and is reported in separate documents (Ref. 1 and 2).

It should be noted that this report focuses on the localised areas of proposed development within the overall site.

1.3 Previous Reports

A Phase 1 desk study was completed by Arcadis in August 2018 which is referenced as follows:

 Arcadis Consulting, Epsom Hospital - Main Hospital Site - Phase 1 Geo-Environmental Desk Study, August 2018, Ref: 10020221-ARC-02-XX-RP-ZZ-0001-01 (Ref. 3)

The Phase 1 Desk Study identified some potential sources of contamination which informed the scope of the intrusive investigation.

A separate Factual and Interpretative report was completed in September 2018 for the residential development of Plot 2A with the Epsom Hospital site, the report reference is as follows:

- Epsom Hospital Plot 2A Phase 1 Geo-Environmental Desk Study, July 2018, Ref: 10020221-ARC-01-XX-RP-ZZ-0001-01 (Ref. 1)
- Epsom Hospital Plot 2A Phase 2 Geo-Environmental and Geotechnical Assessment Report, Ref: 10020221-ARC-XX-XX-RP-ZZ-0007-01, dated September 2018 (Ref. 2)

1.4 Report Objectives

The objectives of this report are to:

- Present the factual information obtained from the intrusive investigation.
- Provide an assessment of whether the potential pollutant linkages identified in the Arcadis desk study (Ref. 3) are likely to be a concern to the development and/or require further assessment/remediation.
- Provide a preliminary assessment of ground conditions to support a geotechnical assessment of potential foundation requirements for the development proposals.

1.5 Limitations

This report has been prepared for Epsom and St Helier University Hospitals NHS Trust in accordance with the terms and conditions of appointment, dated 4th July 2018. Arcadis cannot accept any responsibility for any use of or reliance on the contents of this report by any third party. The copyright of this document shall remain the property of Arcadis.

This report has been compiled from a number of sources, which Arcadis believes to be trustworthy. However, Arcadis is unable to guarantee the accuracy of information provided by others. The report is based on information available at the time of writing. Additional information may become available in the future which may have a bearing on the conclusions of this report and for which Arcadis cannot be held responsible.

Ground investigations by nature only reveal a small percentage of the ground conditions present beneath the site. The possibility of significant variation in ground conditions existing between sampling locations cannot be discounted. Soil borne gas and groundwater conditions are based on observations made at the time of the investigation and during subsequent monitoring visits and may be subject to significant variation due to atmospheric, seasonal or other effects.

Arcadis do not accept liability for any use of the information presented in this report unless it is signed by the author, checker and approver and marked as final.

2 Site Setting and Preliminary Conceptual Site Model

The following presents a summary of the site setting and preliminary conceptual model identified in the Arcadis Phase 1 Geo-Environmental Desk Study (Ref. 3).

2.1 Site Location and Description

The site is located approximately 1km south west of the town centre of Epsom, Essex. The Ordnance Survey National Grid Reference for the approximate centre of the site is TQ 204598. The nearest postcode to the site is KT18 7EG. A site location plan is presented in Figure 1.

Figure 1 – Site Location Plan (background mapping from OS Opensource Data)

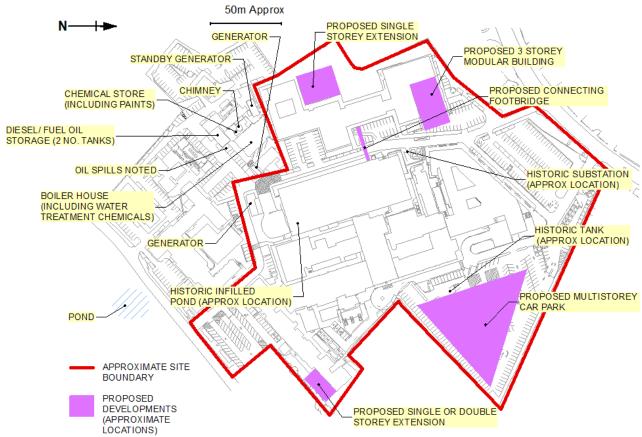
The overall site comprises the majority of the central and northern part of the Epsom hospital site (an area of approximately 4.56 Ha in size), as shown on Figure 2 (Site Layout Plan).

The site comprises part of an operational hospital facility with associated buildings and infrastructure, including several working hospital wards, offices, portacabins, and associated infrastructure such as generators. Buildings within this part of the site include Langley Wing, Wells Wing, Headley Wing, Woodcote Wing, Denbies Wing, A&E and Day Surgery Unit, Maternity Wing, Bradbury Wing, Ebbisham Ward and Oaks Suite. Car parking areas are present across the site, including the main hospital car park within the north-eastern portion of the site.

Access to the site is via the main hospital entrance off Dorking Road to the north and/or off Woodcote Green Road which borders the site to the south. All access within the site is via minor roads with sufficient breadth for ground investigation drilling rigs.

The site is bounded by residential properties to the north and west. The southern part of Epsom Hospital is adjacent to the south west. To the south and south east there is residential housing and a pond within parkland (known as Woodcote Millennium Green). Epsom Hockey Club and tennis courts are situated adjacent to the east of the site.

The site is generally level with a slight incline towards the west, particularly the soft landscaped area to the west of Langley Wing. The topography of the surrounding area slopes gently down from the south and south west to the north and north east.


A site walkover survey was undertaken as part of the Phase 1 Desk study (Ref. 3) on 12th July 2018. The notable site uses are presented on Figure 2 and summarised as follows:

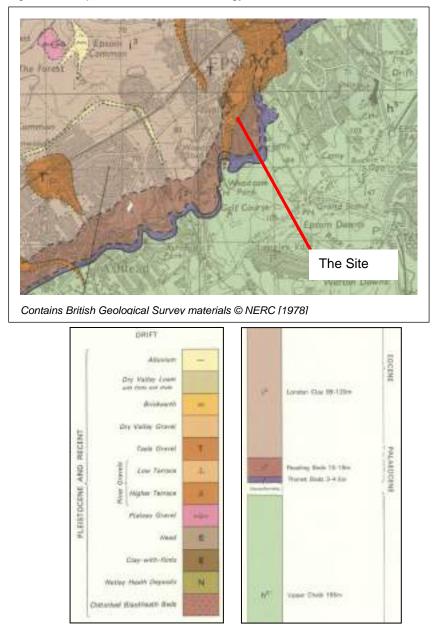
- The majority of the site is covered with buildings, concrete hard standing areas and tarmac parking areas with some areas of soft landscaping.
- Large car parking areas are situated within the northern and north-eastern parts of the site.
- Medical Gases Cylinder Store noted along the main access road opposite the main car park.
- Venting pipes observed in the corner of the garden area associated with the former mental health facility (northern part of Langley Wing). This is where the proposed 3 storey modular building is situated. It is understood that this is a gas governor uninterruptible mains gas supply dedicated for the main boiler house incorporating slam shut downs, regulator/governor to reduce down from high pressure.
- In the vicinity of the proposed single storey extension to the west of Langley Wing, the ground slopes from west to east with levels varying by approximately 1.5m.
- A chimney with standby generator and medical gas [liquid oxygen] containers, chemical store, diesel/fueloil store, boiler house and a second generator occupy the land adjacent to the south of the subject hospital site boundary.
- A generator, waste recycling facilities and infectious substances storage containers are situated at the southern end of the subject site.
- Wells Wing (large brick/concrete 1960s approx. 6 storey building) occupies the majority of the central part of the subject site, which houses the hospital mortuary.
- A pond is situated on the other side of Woodcote Green Road, opposite Rowan House (offsite).
- Woodcote Wing is situated in the south-eastern part of the site with a single storey extension proposed at the northern end of the building, the land adjacent to the building is heavily vegetated/overgrown.
- Denbies Wing, A&E, Maternity Wing and Bradbury Wing consist of red-brick buildings constructed in the 1990s.
- Given the age of the majority of the hospital buildings/structures, the potential presence of asbestos containing materials (ACMs) cannot be discounted.
- Numerous underground services were noted across the site associated with water supply, drainage, gas, electricity and telecommunications.

In relation to the potential adjacent "off-site" sources of contamination, the following information has been provided by the Head of Estates (operations) for Epsom & St Helier University Hospitals NHS Trust:

- The boiler water is treated with sodium bisulphite and sodium hydroxide. These chemicals are stored within the Boiler House.
- Other substances stored on site are diesel, paint and liquid oxygen. Paint is stored in the chemical store by the Boiler House.
- The hospital has two 115,547 litre fuel oil storage tanks. Tank No 2 is currently empty. The fuel oil storage is used as the backup fuel for the steam boilers. Additional information, including maintenance requirements, is presented in Appendix E. It is understood that both tanks are situated within the same bunded compound adjacent to the boiler house.

Figure 2 – Current and Proposed layout Plan (background mapping provided by Epsom & St Helier University Hospitals NHS Trust)

2.2 Environmental Setting


The following section summarises the pertinent information from the Phase 1 Desk Study Report (Ref. 3).

2.2.1 Geology, Hydrogeology and Hydrology

According to the British Geological Survey Geoindex (Ref. 4) and the Envirocheck Geology Datasheet obtained for the Phase 1 Desk Study (Ref. 3) the north western side of the site is underlain by the London Clay Formation, comprising Clay and Silt. The eastern part of the site is underlain by the Lambeth Group formerly known as the Reading Beds, comprising clay, silt and sand. According to the geological cross section lines provided on the published BGS Map sheet of Reigate (Ref. 5) the bedrock (London Clay and Lambeth Group) appears to be dipping gently towards the north west. These strata (London Clay and Lambeth Group) that outcrop on the site are in turn underlain by Thanet Sands and then Chalk, at greater depth.

Superficial deposits directly underlie the majority of the site and cut across the solid geology. These are River Terrace Deposits, comprising sand and gravel which extend northwards from the site. In the north western corner of the site no superficial deposits are indicated to be present. The local geology is displayed on Figure 3.

Figure 3 – Superficial and Solid Geology

No geological fault lines were indicated to be present within 1km of the site.

As the site has previously been developed Made Ground is anticipated.

The Envirocheck Report indicates that the bedrock is a Secondary A aquifer. The River Terrace Deposits are defined as having permeable layers capable of supporting water supplies at a local rather than strategic scale, and in some cases forming an important source of base flow to rivers.

The site is not located within a groundwater Source Protection Zone (SPZ). There are no recorded groundwater abstraction licences within 1km of the site.

The nearest surface water feature is a pond approximately 30m south in Woodcote Green Park. Historical maps indicate the pond has been present sine pre-1871 and several surface 'drains' which appear to drain into the pond from the south east and south and appear to be man-made. It is not known whether the pond is man-made, but it does not appear to be connected to a wider stream or river network. The nearest (natural) stream is the Bonesgate Stream, approximately 2.7km north west which flows in a north easterly direction

towards the Hogsmill River. The historical map review has indicated that a pond was present on site and several ponds were present within 250m of the site which have since been infilled. It is not known whether the ponds were natural or man-made.

Based on the topography and the published geological maps, the direction of groundwater flow within the River Terrace Deposits is expected to be towards the north. Groundwater flow within the Lambeth Group is conceived to be more likely to be towards the north west, based on the inferred dip direction of the bedrock.

2.2.2 Site History

The historical map review indicates that prior to being developed into a hospital, the site comprised Epsom Union Workhouse and undeveloped land. The central part of the site was developed into Epsom Hospital by 1934 and has undergone several minor phases of demolition and redevelopment since then. Potential sources of contamination on site include asbestos fibres from various phases of demolition and redevelopment on the site.

There was a small pond on the central part of the site which appears to have been infilled circa 1913. The pond may have been infilled with Made Ground or waste although this is not expected to be significant given its size.

There was an on-site historical tank and electricity substation which are potential sources of hydrocarbon and Polychlorinated Biphenyl (PCB) contamination. There is a current generator adjacent to the south of Wells Wing.

Adjacent to the south and south west is the Plot 2A site of Epsom Hospital which was developed around the same time as the Main site and has also undergone phases of minor redevelopment. There is a chimney, diesel/fuel-oil storage tank, generator, standby generator (oil spills noted), boiler house and chemical store within the Plot 2A site, approximately 5-30m south/ south west which are potential sources of contamination and are directly up hydraulic gradient from the site.

There were historical tanks approximately 30m north east, an electricity substation approximately 45m north east and garages approximately 240m north of the site. These are not considered likely to have significantly impacted the site as they are at a moderate distance and not directly up hydraulic gradient from the site.

2.2.3 Potentially Contaminative Land Uses

Based on the Envirocheck Report obained for the Phase 1 Desk Study (Ref. 3) there are 5no contemporary trade directory entries within 200m of the site (recorded onsite and up to 109m away), relating to hospital's (Epsom General Hospital), cleaning materials and equipment and lighting manufacturers. 2 of these entries are located onsite and relate to the MRI unit and the Orthopaedic centre.

A potentially infilled former pond is located onsite and was infilled around 1913. Another infilled pond is located 11m northeast of the site, and dates back to 1945.

One Part B Authorisation is located 240m northeast of the site and relates to the Woodcote BP Service Station.

There are no current or historic landfill sites within 250m of the subject site.

2.2.4 Radon

According to the Radon Atlas of the UK (Ref. 6) the site is located within a lower probability radon area (less than 1% of homes are estimated to be at or above the Radon Action Level).

No radon protective measures are necessary in the construction of new buildings.

2.2.5 Unexploded Ordnance (UXO)

A map of Unexploded Bomb Risk for the local area was obtained from Zetica which is detailed within the Phase 1 Desk Study (Ref. 3) which shows that the site is within an area of Low London Bombing Density. Low risk areas are those which have seen a bombing density of up to 10 bombs per 1000 acres. No abandoned bombs, UXO finds or strategic targets were identified within 1km of the site.

2.3 Preliminary Conceptual Site Model

Based on the information obtained from Desk Study report, potential pollutant linkages were identified, as detailed in Table 2.1.

Table 2.1 Potential Pollutant Linkages

Potential Contaminant Source	Potential Pathway	Receptor	Likelihood of Pollutant Linkage
On site			
			Unlikely – current and future site users would be unlikely to come into contact with potential contamination as the majority of the site is covered with hardstanding.
General Made Ground from various phases of demolition and redevelopment of the site.	Accidental ingestion of contaminants within soil, water and dust. Inhalation of dusts, vapours or hazardous ground gas Dermal contact with contaminants in soil, water and dust	Current and future site users	Potential for ground gas is unlikely – Made Ground containing putrescible material that would be capable of generating significant ground gas (methane and carbon dioxide) is not expected to be present.
Small infilled pond Historic tank and electricity substation Current generator		Maintenance workers	Likely - future maintenance workers and contractors could be exposed during below ground works such as digging, maintaining services etc. Hydrocarbon vapours may be present.
	Leaching of contaminants from Made Ground and vertical migration into groundwater Horizontal migration of contaminants in groundwater	Secondary A Aquifer (bedrock and superficial deposits) underlying the site Groundwater SPZ down gradient Pond adjacent to the south	Likely – disturbance of soils and general Made Ground during the development could cause increased leaching of potential contaminants, however the provision of hardstanding in the finished development would minimise rainfall derived leaching.

	Direct contact	Buildings	Unlikely – within general Made Ground and soils impact of a degree capable of causing significant impact to the built environment is unlikely to be present. The exception may be drinking water – piped supplies.
Sulphates in the London Clay.	Direct contact	Buildings	Likely - The London Clay underlying the north western side of the site is a potential source of sulphates which can cause aggressive ground conditions for below ground concrete.

Off site

	Accidental ingestion of contaminants within soil, water and dust. Home grown produce, if gardens are proposed	Current site users	Unlikely – current site users would not likely come into contact with potential contamination as the majority of the site is covered with hardstanding.
Potential localised hydrocarbon and solvent contamination from standby generator, diesel/fuel -oil store, boiler house, chemical store and second generator within Plot 2A site). Chemicals used for boiler water treatment and paints (Plot 2A site).	Inhalation of dusts, vapours or hazardous ground gas Dermal contact with contaminants in soil, water and dust	Maintenance workers	Low likelihood that future maintenance workers and contractors could be exposed to contaminants in groundwater that has migrated onto the site (during below ground works such as digging, maintaining services etc).
	Direct contact	Buildings	Low likelihood that gross hydrocarbon with the potential to impact services such as PVC water supply pipes would have migrated beneath the site in groundwater.

3 Site Investigation

3 Scope of Works

The ground investigation was designed and undertaken to examine the geo-environmental and geotechnical conditions of the site and provide evidence of its suitability for the proposed land use, and to review the findings of the Phase 1 Desk Study (Ref. 3).

An exploratory hole location plans are included in Appendix A.

3.2 General

Ground investigation works were carried out between 15th and 23rd August 2018. The scope of the ground investigation, including the location, scheduled depth and type of exploratory hole undertaken was determined by Arcadis Consulting Ltd and is summarised in Table 3.1.

Table 3.1 Initial Ground Investigation Scope

Location ID	Hole Type	Scheduled Depth (m)	Requirements
BH103	HTP + CP	15.0	Determine thickness of engineering soils; penetrate 3 m into bedrock; collect representative samples of strata and undertake <i>in situ</i> tests. BH103 is positioned in what is believed to be down hydraulic gradient from the key source areas as identified in the Desk Study. It will enable an understanding of the potential extent of any contaminant plume (if present) and hence informing any liability issues that may need to be considered as part of the sale of Plot 2A land.
BH105	HTP + CP	15.0	Determine thickness of engineering soils; penetrate 3 m into bedrock; collect representative samples of strata and undertake <i>in situ</i> tests. Targeting ground conditions for proposed multi-storey car park (probably 6 storeys to take 850 cars). Also targets former tank in this part of the site as shown on historic maps (circa 1896 - 1913), it is not known if this was a former fuel or water tank.
BH106	HTP + CP	15.0	Determine thickness of engineering soils; penetrate 3 m into bedrock; collect representative samples of strata and undertake <i>in situ</i> tests. Targeting ground conditions for proposed connecting footbridge.
BH107	HTP + CP	15.0	Determine thickness of engineering soils; penetrate 3 m into bedrock; collect representative samples of strata and undertake <i>in situ</i> tests. Targeting ground conditions for proposed connecting footbridge.
WS106	HTP + DS	5.0	Determine thickness of engineering soils; collect representative samples of strata and undertake <i>in situ</i> tests. Targeting ground conditions for proposed single storey extension.
WS107	HTP + DS	5.0	Determine thickness of engineering soils; collect representative samples of strata and undertake <i>in situ</i> tests. Targeting ground conditions for proposed single storey extension.

Location ID	Hole Type	Scheduled Depth (m)	Requirements
WS108	HTP + DS	5.0	Determine thickness of engineering soils; collect representative samples of strata and undertake <i>in situ</i> tests. Targeting ground conditions for proposed single storey extension (possibly 2 storey).
WS109	HTP + DS	5.0	Determine thickness of engineering soils; collect representative samples of strata and undertake <i>in situ</i> tests. Targeting ground conditions for proposed multi-storey car park (probably 6 storeys to take 850 cars).
WS110	HTP + DS	5.0	Determine thickness of engineering soils; collect representative samples of strata and undertake <i>in situ</i> tests. Targeting ground conditions for proposed multi-storey car park (probably 6 storeys to take 850 cars).
WS111	HTP + DS	5.0	Determine thickness of engineering soils; collect representative samples of strata and undertake <i>in situ</i> tests. Targeting ground conditions for proposed 3 storey modular building.
WS112	HTP + DS	5.0	Determine thickness of engineering soils; collect representative samples of strata and undertake <i>in situ</i> tests. Targeting ground conditions for proposed 3 storey modular building.

Notes: HTP = hand excavated trial pit, CP = cable percussive boring, DS = dynamic sampling.

The investigation works were carried out under the supervision of a suitably experienced ground investigation engineer who undertook the logging and sampling of the exploratory holes and *in situ* testing.

3.3 Exploratory Holes

3.3.1 Exploratory Hole Locations

The co-ordinates and elevations of the exploratory hole locations were obtained by the Arcadis supervising engineer using a Trimble VRS NOW GPRS system; allowing an accuracy of +/-50 mm.

Drawing 10020221-ARC-03-XX-DR-ZZ-0001 presented in Appendix A displays the as-constructed exploratory hole locations while the co-ordinates and elevation of the ground surface at each exploratory hole location are given on the individual logs.

The exploratory hole logs are presented in Appendix C.

3.3.2 Investigation Methodology

Details of the methods of investigation and associated standards adopted are presented in Appendix B; The completed scope of investigation is summarised in Table 3.2. Comments relate to the time of exploratory hole formation, and do not record extended time related behaviour, e.g. of groundwater.

Table 3.2 Summar	ry of Completed	Exploratory	Holes
------------------	-----------------	-------------	-------

Location ID	Hole Type	Start Date	End Date	Final depth (m)	Comment	Termination Reason
BH103	HTP+CP	20/08/2018	20/08/2018	15.00	No groundwater encountered, damp from 14.00 m bgl	Target depth
BH105	HTP+CP	22/08/2018	23/08/2018	15.39	 Groundwater encountered at: 2.50 m bgl, rose to 1.80 m after 20 minutes, 9.70 m bgl, rose to 6.80 m bgl after 20 minutes; and, 13.00 m bgl, rose to 12.00 m bgl after 20 minutes. 	Target depth (SPT run to 15.39 m bgl)
BH106	HTP+CP	21/08/2018	21/08/2018	15.34	No groundwater encountered	Target depth (SPT run to 15.34 m bgl)
BH107	HTP+CP	20/08/2018	20/08/2018	15.38	No groundwater encountered, slight seepage at 3.20 m bgl	Target depth (SPT run to 15.38 m bgl)
WS106	HTP+DS	15/08/2018	15/08/2018	5.45	No groundwater encountered	Target depth (SPT run to 5.45 m bgl)
WS107	HTP+DS	15/08/2018	15/08/2018	4.38	No groundwater encountered	SPT refusal
WS108	HTP+DS	16/08/2018	16/08/2018	1.50	No groundwater encountered	SPT refusal
WS109	HTP+DS	17/08/2018	17/08/2018	3.38	Groundwater encountered at 2.00 m bgl, rose to 1.50 m bgl after 20 minutes	SPT refusal
WS110	HTP+DS	17/08/2018	17/08/2018	1.58	No groundwater encountered	SPT refusal
WS111	HTP+DS	17/08/2018	17/08/2018	5.45	No groundwater encountered	Target depth (SPT run to 5.45 m bgl)
WS112	HTP+DS	17/08/2018	17/08/2018	2.38	No groundwater encountered	SPT refusal

Notes: HTP = hand excavated trial pit, CP = cable percussive boring, DS = dynamic sampling.

3.3.3 Cable Percussive Boring

Cable percussive boring was completed using Dando D4000 drilling rig equipped with 152 mm casing and tools to undertake boreholes up to 15 m bgl.

Samples of the material recovered in borehole were taken to enable representative laboratory testing. Generally small disturbed samples were taken at each change in stratum and at 0.5 m intervals thereafter in

clay soils; and bulk samples were taken at 1 m intervals where the sand and gravel content of the soil was significant.

Where ground conditions were suitable, open drive tube samples were taken using thin-walled sampling apparatus from the relatively undisturbed material at the base of the borehole.

3.3.4 Dynamic Sampling

Dynamic sampling was completed using a track-mounted sampling rig capable of driving windowless sampling tubes using a mechanical hammer dropped repeatedly from a self-governed height to advance window sample tubes into the ground.

The time to drive the sampling tubes (or number of blows for the mechanical hammer) was recorded together with a description of the recovered materials by the supervising engineer or the lead driller.

Photographs of the materials recovered are presented with the appropriate hole log. To enable a representative photographic record, the samples were split prior to the photograph and subsequently destructively logged.

Due to the method of investigation, the materials recovered within the sampler apparatus were generally disturbed and were assessed as complying with Class 3 to Class 5 of BS EN 22475-2. Sub-samples of the material recovered in the liners were taken to enable representative laboratory testing. Generally small disturbed samples were taken at each change in stratum and at 0.5 m intervals thereafter in clay soils; and small bulk samples were taken at 1 m intervals where the sand and gravel content of the soil was significant.

3.4 In Situ Testing

3.4.1 Standard Penetration Tests

Standard penetration tests (SPT) were carried out as required in the investigation scope and in accordance with the methods given in the standard procedures presented within Appendix C. Generally, tests were undertaken at regular intervals throughout the borehole to provide a profile of the soil's resistance with depth and a disturbed soil samples was recovered from the SPT split-spoon tool or a disturbed sample was taken over the range of the test interval.

The N-values as determined in the field are presented on the borehole logs as uncorrected values that do not take into account the energy losses or efficiency of the automatic trip hammer used to drive the test tool into the ground. The calibration certification for the test devices used in the investigation is presented in Appendix E and a summary of the SPT equipment used at each location is presented in Table 3.3.

Location ID	SPT Hammer Reference No.	Energy Efficiency Ratio, E _r %	Comment
BH103 and BH107	SEDS8	69	Test date 10/05/2018
BH105 to BH106	SEDS11	71	Test date 27/07/2018
WS101 to WS105	219	78.68	Test date 09/04/2018

Table 3.3 Test Hammer Calibrations

3.4.2 VOC Head Space Screening

The presence of Volatile Organic Compounds (VOC) within the ground was determined using a photoionization detector (PID) to detect the 'headspace' vapours emitted by the compounds. The method is applicable to a wide range of compounds that have sufficiently high volatility to be liberated from the soil or water matrix in normal temperature and pressure ranges.

The headspace test was undertaken on the freshly extracted soil core sample at regular intervals typically of 0.5m, by placing a small amount of material into a screw-top glass jar so that the jar was not more than half-full. The jar opening was covered with an aluminium foil sheet and the lid screwed on to form an air-tight seal. The sample and jar were then shaken for about 15 seconds to break-up and disperse the soil before resting the sample for about 5 minutes.

To assess the headspace vapour, the jar lid was removed and the PID probe was inserted through the foil into the headspace area. The PID reading recorded was the highest response observed in the first 10 seconds. The screening results are presented on the relevant exploratory holes logs within Appendix C...

The testing was undertaken using a Mini RAE 3000 PID with a 10.6 eV lamp.

The PID instrument was calibrated regularly throughout the day using Balance Air and Isobutylene Mixture reference gas concentrations.

3.5 Installations and Post-fieldwork Monitoring

3.5.1 Installations

Installations to enable long term monitoring of the site were made in those boreholes selected by Arcadis Design Engineer and the details are summarised in Table 3.4 and are also provided on the relevant borehole logs.

Location ID	Installation Type	Response Zone Top m bgl	Response Zone Base m bgl	Comment/limitations
BH103	SP50	14.0	15.0	Flush cover set in 0.50 m concrete 13.50 m bentonite pellet seal to top of response zone 1.00 m pluviated sand filter around response zone to base of hole
BH105	SP50	2.0	3.8	Flush cover set in 0.50 m concrete 1.50 m bentonite pellet seal to top of first response zone 1.80 m pluviated sand filter around first response zone
	SP50	9.7	10.0	5.90 m bentonite pellet seal to top of second response zone0.30 m pluviated sand filter around second response zone5.39 m bentonite seal to base of hole.
BH106	SP50	10.0	15.0	Flush cover set in 0.50 m concrete 9.50 m bentonite pellet seal to top of response zone 5.00 m pluviated sand filter around response zone 0.34 m bgl bentonite pellet seal to base of hole
BH107	SP50	2.0	6.0	Flush cover set in 0.50 m concrete 1.50 m bentonite pellet seal to top of response zone

Table 3.4 Summary of Exploratory Hole Installations

				4.00 m pluviated sand filter around response zone9.38 m bgl bentonite pellet seal to base of hole
WS106	SP50	0.5	5.0	Flush cover set in 0.25 m concrete 0.25 m bentonite pellet seal to top of response zone 4.50 m pluviated sand filter around response zone 0.45 m bgl bentonite pellet seal to base of hole
WS107	SP50	0.5	4.0	Flush cover set in 0.25 m concrete 0.25 m bentonite pellet seal to top of response zone 3.50 m pluviated sand filter around response zone 0.38 m bgl bentonite pellet seal to base of hole
WS108	SP50	0.5	1.2	Flush cover set in 0.25 m concrete 0.25 m bentonite pellet seal to top of response zone 0.70 m pluviated sand filter around response zone 0.30 m bgl bentonite pellet seal to base of hole
WS109	-	-	-	No installation as borehole collapsed back up to 1.00m bgl Backfilled with 0.25 m bitumen bound material over 3.13 m arisings to base of hole
WS110	SP50	0.5	1.2	Flush cover set in 0.25 m concrete 0.25 m bentonite pellet seal to top of response zone 0.70 m pluviated sand filter around response zone 0.38 m bgl bentonite pellet seal to base of hole
WS111	SP50	0.5	1.5	Flush cover set in 0.25 m concrete 0.25 m bentonite pellet seal to top of response zone 1.00 m pluviated sand filter around response zone 3.95 m bgl bentonite pellet seal to base of hole
WS112	SP50	1.0	2.0	Flush cover set in 0.25 m concrete 0.75 m bentonite pellet seal to top of response zone 1.00 m pluviated sand filter around response zone 0.38 m bgl bentonite pellet seal to base of hole

Notes: SP50 = 50 mm ID standpipe.

3.5.2 Post-fieldwork Monitoring

Post-field work monitoring was undertaken on separate visits on the 23rd August, 31st August, 13th September, and 28th September 2018. In all, three visits to the site were made to record land gas emissions and while four visits were made to monitor groundwater levels. During the first monitoring visit, the wells were purged by removing three well volumes of groundwater and *in situ* groundwater monitoring and sampling was undertaken. Where installations were purged dry, monitoring and sampling was conducted on groundwater recovered following recharging of groundwater in installations.

The results of the groundwater monitoring are presented within Appendix E.

4 Ground Conditions

4.1 Encountered Geology

The ground conditions generally are consistent with the published geology identified in the Desk Study (Ref. 3), comprising Made Ground overlying River Terrace Deposits, comprising granular material, in turn overlying cohesive materials.

Made Ground was encountered in all exploratory holes.

The River Terrace Deposits were not encountered to the very west of the site (WS106, WS107 & WS111), where Made Ground directly overlies the bedrock formations. SPT N-Value refusal were encountered within WS108 (1.50mbgl), WS109 (3.38mbgl), WS110 (1.58mbgl) and WS112 (2.38mbgl).

The London Clay Formation and the Lambeth Group (bedrock geology) was encountered during the investigation within most of exploratory holes. All positions terminated either within the River Terrace Deposits or the Bedrock. The extent of the London Clay or the Lambeth Group was not proven.

The full engineering logs are presented in within the Appendix C.

A summary of the encountered geological strata is provided in Table 4.1.

Table 4.1 Summary of ground conditions

Stratum	General Description	Depth range encountered (m bgl)	Thickness range of stratum (m)
Bitumen	Bound black bituminous material was identified on the ground surface at BH103, BH106, BH107, WS109, WS110 and WS112.	Ground level – 0.30	0.15 – 0.30
Topsoil	Grass over brown slightly sandy gravelly CLAY with abundant rootlets. Gravel is fine to coarse of flint. Encountered in WS106 & WS107.	Ground level – 0.20	0.10 – 0.20
Astroturf	Astroturf with a membrane and associated subbase was identified at the ground surface in WS111.	Ground level – 0.30	0.30
Made Ground	Brown/grey clayey/silty sandy GRAVEL. Gravel is angular to subrounded of brick, flint, concrete, chalk and mudstone. Occasional cobbles of brick and flint. Occasional low cobble content of brick and concrete. Reddish brown/black gravelly SAND. Gravel is angular to rounded of brick, limestone, wood, flint and concrete. Occasional low cobble content of brick. Very soft to firm brownish grey sandy gravelly CLAY. Gravel is angular to subrounded of brick, concrete, chalk, quartz, sandstone, limestone, ash, clinker and flint. Identified in all exploratory holes.	Ground level – 2.00	1.00 – 2.00

Stratum	General Description	Depth range encountered (m bgl)	Thickness range of stratum (m)
River Terrace Deposits (Granular)	Loose to very dense light brown to grey slightly silty/clayey sandy to very sandy GRAVEL. Gravel is fine to coarse subangular to subrounded of flint, chalk and quartz. Medium dense to very dense orangish brown slightly silty slightly gravelly SAND. Gravel is fine to coarse angular to subangular of flint. Identified in all exploratory holes except WS106, WS107 & WS111.	0.90 – 3.40	1.30 – 2.38
River Terrace Deposits (Cohesive)	Firm orangish brown sandy gravelly CLAY. Gravel is angular to subrounded of flint and quartz. Only encountered in BH105	2.00 - 2.50	0.50
London Clay Formation	Stiff to very stiff slightly sandy to sandy slighty gravelly clay CLAY. Gravel is fine to medium subangular to sub rounded of flint and chalk. Stiff to very Stiff grey slightly sandy CLAY. Occasional laminations of sand. Encountered in WS106, WS107 and BH106 only.	1.00 – 15.00	Not Proven
Lambeth Group (Cohesive)	Firm to very stiff purplish brownish/greenish grey slightly sandy silty CLAY. Soft to firm light grey/greenish grey CLAY. Dense to very dense dark greenish grey clayey SAND.	2.50 – 15.00	Not Proven

4.2 Groundwater

Groundwater strikes observed during drilling were recorded as follows:

- BH103: Damp from 14.00m bgl.
- BH105: Strike at 2.50m bgl in granular River Terrace Deposits, rising to 1.80m bgl after 20 minutes.
- BH105: Strike at 9.70m bgl within Sand of the Lambeth Group, rising to 6.80m bgl after 20 minutes.
- BH105: Strike at 13.00m bgl within Sand of the Lambeth Group, rising to 12.00m bgl after 20 minutes.
- BH107: Slight seepage at 3.20mbgl.
- WS109: Strike at 2.00mbgl within granular River Terrace Deposits, rising to 1.50mbgl after 20 minutes.

Standing groundwater levels were recorded during the three post fieldwork monitoring rounds which are summarised in Table 4.2.

Table 4.2 Summary of groundwater levels from post fieldwork monitoring	

Exploratory Position	Response Zone (m bgl)	Geology of Response Zone	Monitored Groundwat er Level 23/01/2018 (m bgl)	Monitored Groundwater Level 31/08/2018 (m bgl)	Monitored Groundwater Level 13/09/2018 (m bgl)	Monitored Groundwater Level 28/09/2018 (m bgl)
BH103	14.0 – 15.0	Lambeth Group	1.11	No access to well	No access to well	0.43
BH105 (S)	2.0 - 3.8	River Terrace Deposits/Lamb eth Group - Sand	1.50	3.45	3.39	2.28
BH105 (D)	9.7 – 10.0	Lambeth Group – Sand	1.25	3.45	3.40	2.33
BH106	10.0 – 15.0	London Clay	Dry	Dry	Dry	11.15
BH107	2.0 - 6.0	River Terrace Deposits/Lamb eth Group	2.25	2.25	2.23	2.21
WS106	0.50 - 5.0	Made Ground/London Clay	1.16	1.16	1.16	1.14
WS107	0.50 – 5.0	Made Ground/London Clay	2.57	2.57	2.57	2.07
WS108	0.50 – 1.20	River Terrace Deposits	Dry	Dry	Dry	Dry
WS109	No Install	N/A	N/A	N/A	N/A	N/A
WS110	0.50 – 1.20	Made Ground/River Terrace Deposits	Well not located	Dry	Dry	Dry
WS111	0.50 - 1.5	Made Ground	Dry	Dry	Dry	1.36
WS112	1.0 - 2.0	River Terrace Deposits	Dry	Dry	Dry	Dry

4.3 Visual and Olfactory Evidence of Contamination

Apart from the components of Made Ground identified above (clinker), no visual or olfactory evidence of contamination was identified during the site investigation.

4.4 Geotechnical Parameters

Geotechnical parameters (preliminary indicative) for each principal stratum type encountered within the exploratory holes are summarised below. These are based on test results or correlation of site observations with published data. It is important that the accompanying notes and previous report are read in detail together with the application of an experienced precautionary approach when using this data to help inform future outline and detailed design and help inform the construction process.

The geotechnical laboratory results are included within Appendix F.

4.4.1 Made Ground

Geotechnical classification tests undertaken on two samples of cohesive Made Ground at a depth of between 0.30m and 0.70mbgl indicated the following;

Test	Values
Natural Moisture Content	14 - 19
Liquid Limit	32 - 35
Plastic Limit (%)	17 - 20
Plasticity Index (%)	15
Fraction Passing <0.425mm (%)	59 - 61
Modified Plasticity Index (%)	8.85 - 9.15

Table 4.3 Summary of Cohesive Made Ground Classification

The classification test results indicate that cohesive samples of Made Ground have a modified plasticity index of between 8.85 - 9.15%, which therefore has a low shrink-swell potential.

Due to the shallow depth of Made Ground deposits at the subject site, widespread representative SPT tests were not undertaken within the stratum.

BRE279 testing was undertaken on one sample of Made Ground at a depth of between 0.70m and 0.90mbgl which recorded a pH value of 7.30, total sulphur content of 0.05%, and an acid soluble sulphate value of 0.08% SO4.

4.4.2 River Terrace Deposits

Geotechnical classification tests undertaken on two samples of cohesive RTDs at a depth of between 2.00m and 3.45mbgl indicated the following;

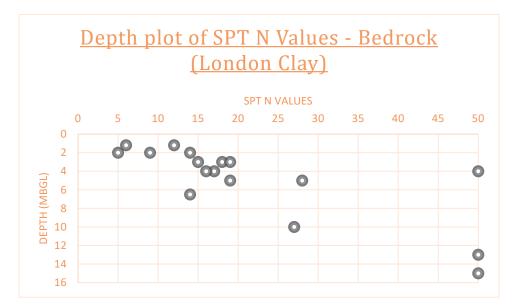
Table 4.4 Summary of Cohesive River Terrace Deposits Classification

Test	Values
Natural Moisture Content	14 – 17
Liquid Limit	33 – 34
Plastic Limit (%)	19
Plasticity Index (%)	14 – 15

Test	Values
Fraction Passing <0.425mm (%)	50 – 56
Modified Plasticity Index (%)	7 – 8.4

The classification test results indicate that cohesive samples of the River Terrace Deposits have a modified plasticity index ranging from 7% to 8.4%, which therefore has a low shrink-swell potential.

Geotechnical classification tests undertaken on 1 sample of Granular RTDs between 2.00 and 2.50mbgl indicated that soils consisted of silty/clayey very sandy GRAVEL.


These deposits are, by the nature of deposition, likely to be highly heterogeneous, and variation in lithology should be anticipated both laterally and with depth beyond the locations of each exploratory hole. This natural variation will strongly influence permeability and entry of water into excavations, and stability of excavations, in the presence of groundwater.

SPT testing undertaken within the RTDs ranged between N-values of 3 to 50 indicating loose to very dense relative densities. SPT N-Value refusal were encountered within WS108 (1.50mbgl), WS109 (3.38mbgl), WS110 (1.58mbgl) and WS112 (2.38mbgl). Due to the prevalence of granular strata within the RTDs, representative SPT testing has not been undertaken on the cohesive stratum. The higher values are likely to be skewed (e.g. by presence of gravel).

4.4.3 London Clay

SPT testing undertaken within the London Clay recorded SPT N-values of between 5 to 50 indicating firm to very stiff consistencies. In general, an overall increase in strength with depth was noted within the data set.

Figure 4.1 displays the relationship between depth and the increase in SPT N-value within the London Clay.

Geotechnical classification tests undertaken on 9 samples of the cohesive London Clay Formation at a depth of between 1.20m and 6.60mbgl indicated the following;

Test	Range of Values
Natural Moisture Content	12 – 34
Liquid Limit	33 – 70
Plastic Limit (%)	17 – 26
Plasticity Index (%)	15 – 38
Fraction Passing <0.425mm (%)	60 – 100
Modified Plasticity Index (%)	9.6 – 38

Table 4.5 Summary of Cohesive London Clay Classification

The classification test results indicate that these cohesive samples of the London Clay Formation have a modified plasticity index of 9.6 to 38%, which therefore has a low to medium shrink-swell potential.

Geotechnical classification testing on 1 cohesive sample of the London Clay indicated that the soils consist of slightly gravelly slightly sandy silty Clay.

BRE279 testing was undertaken on two samples of the London Clay at depths of between 1.20m and 4.45mbgl which recorded a pH value range of 7.28 - 7.82, total sulphur content range of 0.12 - 0.14%, and an acid soluble sulphate value range of 0.27 - 0.31% SO4.

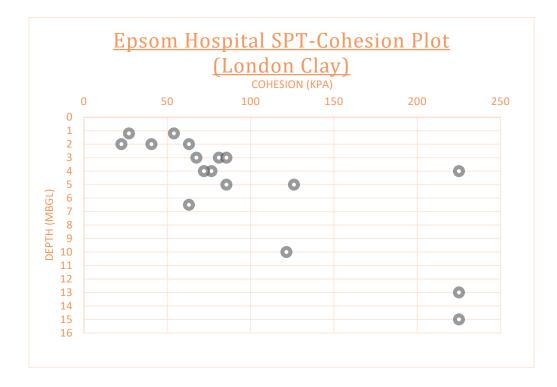
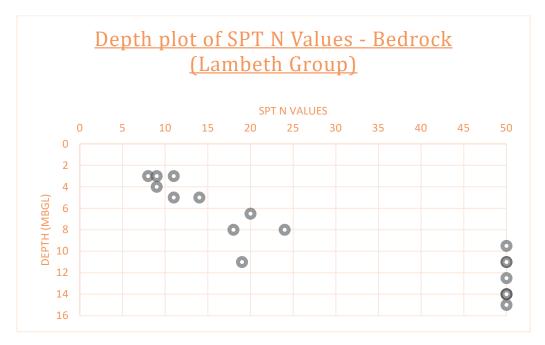

1no "undisturbed" samples was submitted for multi-stage unconsolidated-undrained triaxial tests to determine the undrained shear strength (cohesion) of the material. A summary of the results is presented in Table 4.6.

Table 4.6 Summary of Undrained Triaxial Classification - multistage

Exploratory Hole	Depth	Cell Pressure (kPa)	Undrained Shear Strength (kPa)	Mode of Failure
		100	115	_
BH106	5.00 - 5.45	150	121	Compound
		200	120	

The result corresponds to description of stiff clay soil.


The cohesion/shear strength of the strata has also been estimated based on the relationship between shear strength (Cu), plasticity index and SPT N value (after Stroud, 1975) whereby Cu = f1 N. A mean plasticity index of 30% (obtained from onsite testing) has been used to determine coefficient f1 = 4.5. The cohesion plot is presented in Figure 4.2.

4.4.4 Lambeth Group

SPT testing undertaken within the Lambeth Group recorded SPT N-values of between 9 to 50 indicating stiff to very stiff consistencies. In general, an overall increase in strength with depth was noted within the data set.

Figure 4.3 displays the relationship between depth and the increase in SPT N-value within the Lambeth Group.

Geotechnical classification tests undertaken on 6 samples of the cohesive Lambeth Group at a depth of between 3.00m and 11.10mbgl indicated the following;

Test	Range of Values
Natural Moisture Content	25 – 44
Liquid Limit	41 – 85
Plastic Limit (%)	19 – 37
Plasticity Index (%)	20 – 47
Fraction Passing <0.425mm (%)	100
Modified Plasticity Index (%)	20 – 47

Table 4.7 Summary of Cohesive Lambeth Group Classification

The classification test results indicate that these cohesive samples of the Lambeth Group have a modified plasticity index of 20 to 47%, which therefore has a medium to high shrink-swell potential.

Geotechnical classification testing on 1 cohesive sample of the Lambeth Group indicated that the soils consist of slightly sandy silty Clay.

BRE279 testing was undertaken on three samples of the Lambeth Group at depths of between 3.00m and 4.45mbgl which recorded a pH value range of 6.97 - 7.51, total sulphur content range of 0.11 - 0.19%, and an acid soluble sulphate value range of 0.27 - 0.49% SO4.

Two dry one dimensional consolidation tests were undertaken on cohesive samples of the Lambeth Group, and indicated the following;

Table 4.8 Summary of the One Dimensional Consolidation Testing of the Lambeth Group

Pressure Range (kPa)	Range of Values Mv (M2/MN)	Range of Values Cv (m2/yr)
0 – 100	0.024 - 0.2	18 – 31
100 – 200	0.11 - 0.15	4.6 - 8.9
200 – 400	012 - 0.14	4.1 – 12
400 - 800	0.088 - 0.090	3.1 – 6.9
800 - 1000	0.043 - 0.060	2.1 – 4.3

Particle density - 2.65 Mg/m³ for tested samples

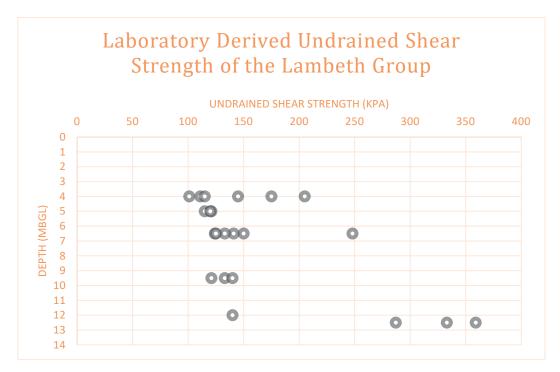
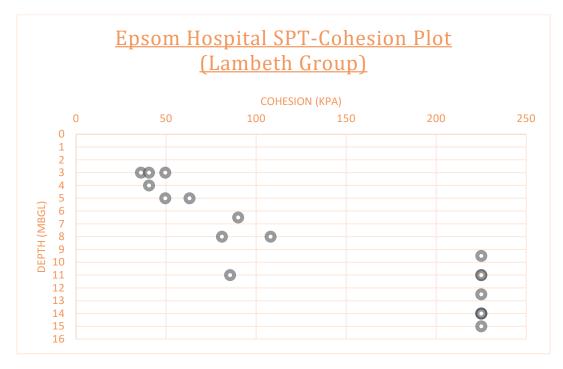

7no "undisturbed" samples were submitted for multi-stage unconsolidated-undrained triaxial tests to determine the undrained shear strength (cohesion) of the material. A summary of the results is presented in Table 4.9.

Table 4.9 Summary of Undrained Triaxial Classification - multistage


Exploratory Hole	Depth	Cell Pressure (kPa)	Undrained Shear Strength (kPa)	Mode of Failure
		100	101	_
BH103	4.00 - 4.45	125	111	Compound
		150	115	

Exploratory Hole	Depth	Cell Pressure (kPa)	Undrained Shear Strength (kPa)	Mode of Failure
		100	133	
BH103	6.50 - 6.95	125	125	Compound
		150	150	
		100	145	
BH105	5.00 - 5.45	150	175	Compound
		200	205	
		100	108	
BH107	4.00 - 4.45	125	116	Compound
		150	120	
		100	124	
BH107	6.50 - 6.95	150	141	Compound
		200	248	
		175	121	
BH107	9.50 - 9.95	225	133	Compound
		275	140	
		250	287	
BH107	12.50 – 12.95	300	333	Compound
		350	359	

The results generally correspond to descriptions of stiff to very stiff clay soils, with an overall increase in strength with depth which is recorded within the depth plot on Figure 4.4.

The cohesion/shear strength of the strata has also been estimated based on the relationship between shear strength (Cu), plasticity index and SPT N value (after Stroud, 1975) whereby Cu = f1 N. A mean plasticity index of 30% (obtained from onsite testing) has been used to determine coefficient f1 = 4.5. The cohesion plot is presented in Figure 4.5.

26

5 Geo-Environmental Assessment

As part of the intrusive investigation, 20 samples, comprising 18 Made Ground and two natural soil samples (one from the River Terrace Deposits, and one from the London Clay) were selected for chemical testing, in order to determine both the 'baseline' condition of the site and assess whether the potential source areas identified in the Desk Study represent potential risks to human health and controlled waters from the proposed works.

The chemical testing results are presented in Appendix G.

5.1 Soil Screening Values (SSVs)

The chemical data have been compared against the Land Quality Management (LQM) Chartered Institute of Environmental Health (CIEH) Suitable for Use Levels (S4UL) for Human Health Risk Assessment (Ref. 7). In the absence of a S4UL for lead, the CL:AIRE Category 4 Screening Level (C4SL) (Ref. 8) has been adopted.

Considering the form of the proposed development the screening values for a 'Commercial/Industrial' Scenario have been adopted in the assessment.

Contamination risks to construction / maintenance workers are not appraised by chronic (long-term) exposure human health risk assessments and would be addressed under UK employment law, in accordance with the Health and Safety Executive publication entitled "Protection of Workers and the General Public during the Development of Contaminated Land", 1991 (HSG 66) (Ref. 9), the Construction Design and Management (CDM) Regulations (2015) (Ref. 10) and/or any other relevant guidance.

A Soil Organic Matter (SOM) content of 1% has been used in the assessment as a precautionary approach, i.e. soils with a low organic matter content are less able to attenuate organic contaminants and hence this represents a worst-case scenario.

5.2 Tier 1 Screening Assessment

5.2.1 Asbestos

20 samples, comprising 18 Made Ground and two natural samples were screened for the presence of asbestos fibres. Three positive detections were observed within the Made Ground and are detailed within Table 5.1.

Location	Sample Depth (m)	ACM Detected	Polarised Light Microscpe Result	Asbestos Quantification
WS106	0.30	Loose Fibres	Chrysotile	< 0.001%
BH103	0.50	Loose Fibres	Amosite	< 0.001%
BH105	0.30 – 0.50	Loose Fibres	Chrysotile	< 0.001%

 Table 5.1 – Asbestos Detections in Made Ground samples

Following quantification, no asbestos concentrations were above the detection limit of 0.001% nor above the hazardous waste concentrations threshold of 0.1% (Ref. 11).

5.2.2 Exceedances of SSVs in Made Ground Samples

Chemical testing including metals and inorganics, phenols, speciated PAH and TPH CWG (including BTEX) were undertaken on 18 Made Ground samples. The exceedances of the SSVs are presented in Table 5.2.

All other determinands tested were either below the relevant SSV or below the laboratory limit of detection. *Table 5.2 – Exceedances of SSVs in Made Ground samples*

Determinand	SSV (residential with plant uptake) (mg/kg)	Range of concentrations (mg/kg)	Number of exceedances	Samples exceeding SSV
Benzo(b)fluoranthene	44	<0.05 - 160	2	WS109 0.30 m bgl (160 mg/kg) BH106 0.60 m bgl (74 mg/kg)
Benzo(a)pyrene	35	<0.05 - 130	2	WS109 0.30 m bgl (130 mg/kg) BH106 0.60 m bgl (65 mg/kg)
Dibenz(a,h)anthracene	(a,h)anthracene 3.5 <0.05 - 19		2	WS109 0.30 m bgl (19 mg/kg) BH106 0.60 m bgl (7.7 mg/kg)

In addition to the above findings, the pH value measured in BH106 0.60 m (11.7 pH units) is higher than the pH range of a normal soil (6-9 pH units). Whilst this alone does not necessarily indicate contamination it does indicate that soils of an unusually alkaline pH are present. The high pH is consistent with, and may be due to, the presence of concrete noted in the Made Ground in BH106.

No exceedances of the SSV were recorded within either BH103 or BH105, which were emplaced close to potential contaminative sources identified within the Desk Study.

5.2.3 Exceedances of SSVs in Natural Soil Samples

Chemical testing comprising metals and speciated PAH, TPH and phenols was undertaken on two samples of natural soils (one from the River Terrace Deposits, and one from the London Clay).

No exceedances were identified against the relevant screening criteria.

5:3 Controlled Waters Risk Assessment

5.3.1 Water Quality Standards

One round of groundwater sampling was undertaken on 23rd August 2018 from the standpipes installed in BH103, BH105 (dual install), BH107, WS106 and WS107.

To assess the risk to controlled waters, the chemical testing results have been compared against appropriate Water Quality Standards (WQS). The WQS comprise Environmental Quality Standards (EQS) from the Water Framework Directive (Ref. 12) which are considered to be protective of the surface water feature (pond) located 10m south of the site, and UK Drinking Water Standards (DWS) from the Water Supply Water Quality Regulations (Ref. 13) which are considered to be protective of the underlying Secondary A Aquifer.

The EQS for copper, zinc and nickel are based on bioavailability. Site specific Predicted No Effect Concentrations (PNEC) have been calculated for copper, zinc and nickel based on the average measured concentration of calcium (104.5 mg/l), average measured pH of 7.42 pH units and an average measured dissolved organic carbon of 3.5 mg/l. The approach used is set out in the Water Framework Directive UK Technical Advisory Group guidance, Metal Bioavailability Assessment Tool (Ref. 14).

The groundwater chemical data is presented in within Appendix G.

5.3.2 Screening Assessment

The concentration of, phenols, TPH and BTEX were below the laboratory limit of detection in all samples analysed. These are therefore not considered to be contaminants of concern, based on one round of analysis.

The majority of PAH determinands were recorded below the level of detection, however acenaphthene, fluorene and pyrene, for which no GAC have been derived (or the target acceptable risk was not exceeded at theoretical solubility concentration), was detected within BH107 at measured concentrations marginally above the laboratory Method Detection Limit (MDL).

5.3.3 Metals

Minor exceedances of the WQS were identified in a number of samples for metals, as presented in Table 5.3. No exceedances were identified in the sample from WS106.

Determinant	EQS (µg/l)	DWS (µg/l)	Samples exceeding EQS/ DWS	
Cadmium	0.08	5	WS107 (0.16 µg/l) (EQS) BH107 (0.44 µg/l) (EQS)	
Selenium	enium 10 10 BH105 (BH103 (55 μg/l) (EQS & DWS) BH105 (S) (24 μg/l) (EQS & DWS) BH105 (D) (23 μg/l) (EQS & DWS)	

Table 5.3 – Exceedances of WQS in Groundwater samples

It is unknown whether the overlying Made Ground or an offsite source of contamination is the cause of the elevated concentrations of metals in the groundwater sample. The contamination does appear to be widespread in the groundwater, therefore it may be an isolated hotspot, or perhaps naturally present.

The concentration of metals in the overlying Made Ground does not indicate a significant source of metals.

BH103 and BH105 were emplaced adjacent to potential hydrocarbon sources, which were identified within the Desk Study, no elevated concentrations of hydrocarbons were recorded.

5.4 Ground Gas Risk Assessment

5.4.1 Gas Monitoring Methodology

Three rounds of ground gas monitoring were undertaken on 31st August 2018, 13th September and 28th September 2018 by Arcadis from the monitoring standpipes installed in BH103, BH105 (dual install), BH107, WS106 and WS107.

Concentrations of methane (CH₄), carbon dioxide (CO₂) and oxygen (O₂) in %v/v, gas flow in litres per hour (I/h) and hydrogen sulphide (H₂S) and Carbon Monoxide (CO) in parts per million (ppm) were recorded during the monitoring visits using a GFM436 Landfill Gas Analyser.

5.4.2 Atmospheric Pressure

Atmospheric pressure can impact ground gas flow. According to CIRIA C665 Assessing the risks posed by hazardous ground gases to buildings (Ref. 15) "at falling pressure increased emission rates occur as the gas increases in volume. Rising pressure causes air to flow into the ground, diluting soil gas concentrations. The rate of change in barometric pressure is also important. A swift drop over a small range has the potential to release a greater concentration of gas than a gradual drop over a greater pressure range".

Atmospheric pressure data for the monitoring period was obtained from the Wunderground Data website (Ref. 16). The data was obtained from a monitoring station at Chessington, located approximately 4km north of the site.

A summary of the atmospheric pressure conditions for each monitoring round is as follows.

- 31st August 2018: Medium and steady atmospheric pressure (1001 1000 millibars (mb))
- 13th September 2018: Medium and steady atmospheric pressure (1001 mb)
- 28th September 2018: High and rising atmospheric pressure (1023 1028 mb)

5.4.3 Gas Monitoring Results

The full results of the three rounds of gas monitoring are presented in the Appendix E. Table 5.4 presents a summary of the range of gas concentrations from the three monitoring rounds. The maximum concentration of CO_2 and CH_4 are shown and the minimum concentration of O_2 , along with the peak and steady gas flow rate. The concentration of H_2S was below the detection limit of the instrument in all locations monitored, so has not been included Table 5.4.

Table 5.4 Summary of gas monitoring results

Borehole Location	Flow Rate range(l/h)	CH₄ range (% v/v)	CO₂ range (% v/v)	O₂ range (% v/v)	CO (ppm)	Groundwater level range (m bgl)
BH103	Peak: 0.0 – 13.0 Steady: 0.0 – 3.0	0.0 - 0.1	0.1 – 2.7	19.4 – 19.5	10	0.43 - 1.11
BH105 (S)	Peak: 0.0 - 0.2 0.0 - 0.1 0.1 - 0.4 2.0 - 20.1 2 Steady: 0.0 - 0.1 0.1 - 0.4 2.0 - 20.1 2		23	1.50 – 3.39		
BH105 (D)	Peak: 0.0 – 0.1 Steady: 0.0 – 0.1	0.0 – 0.1	0.1 – 0.4	18.0 – 20.1	6	1.25 – 3.40
BH106	Peak: 0.0 – 0.1 Steady: 0.0 – 0.1	0.0 – 0.1	0.1 – 1.2	14.9 – 20.1	6	Dry – 11.15
BH107	Peak: 0.0 – 0.1 Steady: 0.0 – 0.1	0.0 – 0.1	0.4 – 0.7	19.3 – 20.4	4	2.21 – 2.25
WS106	Peak: 0.0 – 0.1 Steady: 0.0 – 0.1	0.0 - 0.2	0.4 – 3.1	15.9 – 20.9	5	1.16
WS107	Peak: 0.0 – 0.1 Steady: 0.0 – 0.1	0.0 - 0.2	0.2 - 2.4	19.3 – 20.9	4	2.07 - 2.57

Borehole Location	Flow Rate range(I/h)	CH₄ range (% v/v)	CO₂ range (% v/v)	O₂ range (% v/v)	CO (ppm)	Groundwater level range (m bgl)
	Peak: 0.0 – 0.1					
WS108	Steady: 0.0 – 0.1	0.0 – 0.2	0.6 – 2.5	17.9 – 21.0	7	Dry
	Peak: 0.0 – 0.1					
WS110	Steady: 0.0 – 0.1	0.0 - 0.2	0.1 – 0.2	19.1 – 20.1	0	Dry
	Peak: 0.0 – 0.1					
WS111	Steady: 0.0 – 0.1	0.0 - 0.1	0.4 - 1.9	18.4 - 20.4	4	Dry – 1.36
	Peak: 0.0 – 0.1					
WS112	Steady: 0.0 – 0.1	0.0 – 0.1	0.1 – 1.0	20.1 – 21.2	3	Dry

During the monitoring visits zero or very low positive rates of flow were measured in the monitoring wells. For the purposes of the assessment a flow rate of 0.1 l/h has been used where flow rates were recorded as zero.

The maximum gas flow rate was <3l/hr, except for a peak flow of 13 l/hr recorded in BH103 on 28th September. The steady gas flow rate is 0.1 to 3.0l/hr. The peak gas flow is likely be the result of pressure build up in the gas pipe as it dropped rapidly from the peak reading. Therefore, the steady gas flow is considered to be more representative of the gas flow from the ground and has been used in the assessment below.

In general the concentration of CO was below the instrument limit of detection, with the exception of the monitoring visit on the 28th September monitoring round, where BH105 (23 ppm) recorded during the maximum concentration. For the purposes of the assessment a worst case of <0.1% was used where no results were recorded.

No significantly elevated concentrations of CO2 or CH4 were recorded within the monitoring wells installed across the subject site.

5.5 Preliminary Gas Hazard Assessment

5.5.1 Methane and Carbon Dioxide

The CO2 and CH4 results from the 3 rounds of gas monitoring have been assessed using current guidance from CIRIA C665 (Ref. 15). Following this approach, the gas concentration and borehole flow rate are used to calculate a Gas Screening Value (GSV) and define a Characteristic Situation (CS). The maximum CH4 and CO2 concentrations and maximum steady gas flow rate have been used in the assessment.

The GSV is calculated using the following equation:

GSV (I/h) = borehole flow rate (I/h) x gas concentration (%v)/100

The following parameters have been used in the equation:

CH₄ (max recorded concentration) = 0.2 % v/v

CO₂ (max recorded concentration) = 3.1 % v/v

Flow Rate (max steady flow rate) 3.0 l/hr

GSV CH₄: 0.2/100 x 3.0 = 0.006 - CS1 Very Low Risk

GSV CO₂: $3.1/100 \times 3.0 = 0.093 - CS2$ Low Risk

With reference to BS 8485 Code of Practice for the design of protective measures for methane and carbon dioxide ground gases for new buildings (Ref. 17), if a carbon dioxide concentration greater than 5% v/v is encountered, consideration should be given to assigning a CS2 classification. No exceedances of the CS1/CS2 thresholds have been recorded.

According to the GSV for CO2, BH103 should be classified as Characteristic Situation 2 (Low Risk). This however coincides with elevated groundwater (0.43mbgl) which is inside the upper most plain section of pipework which has created a head of pressure which has likely given rise to an anomalous flow rate reading. According to RB17, a pragmatic approach to ground gas risk assessment (Ref 18), this piece of data is not reliable. In all other respects, and as no elevated concentrations of Carbon Dioxide or Methane or elevated flow rates have been recorded, the site should therefore be classified as Characteristic Situation 1. This is consistent with the conceptual site model, where no source of ground gas, capable of higher rates of volume generation, are present.

No gas protection measures are deemed necessary for structures at the subject site.

5.5.2 Carbon Monoxide

The CO concentrations recorded during the 28th September monitoring round have been compared against the 30ppm Health and Safety Executive (HSE) Workplace Exposure Limits (WEL) for an 8 hour (long term) exposure period (Ref. 19). The concentration recorded in BH105 (up to 23 ppm) does not exceed the 8 hour WEL. As such no further action is required.

6 Other Development Considerations

6.1 Material Management

In the case of managing soil movements or earthworks it is important to also manage the intention to re-use materials, if a genuine need for the materials exists.

This will help avoid unnecessary additional regulation that can sometimes arise from a "waste management" perspective.

Providing materials are suitable for use, both chemically and geotechnically, and that re-use is certain, arisings do not need to enter the waste regulation system. This process is managed via development of a Materials Management Plan (MMP) in line with the CL:AIRE Code of Practice.

If certain materials do require regulation, it is important to note that waste exemptions have changed significantly in recent years and there are now strict limitations on the quantity of soil that can be used and the thickness to which it can be deposited. The use of a waste permit could stigmatise the site for future conveyance. It is on this basis that we would recommend the development of the MMP.

The MMP once drafted must be reviewed together with the approved site investigation and remediation documents by a Qualified Person, with their Declaration being issued to the Environment Agency; ultimately allowing the development to go ahead under a self-regulation approach.

The development of an MMP will require a "Cut and Fill" model or a detailed materials management strategy to identify the sources of and destinations for site-won materials.

6.2 Excess Arisings

On the basis of the current information it is likely that if materials became excess to requirements, the majority of the natural soils would likely classify as "Inert" for landfill disposal. Owning to the likely presence of organic matter within the topsoil, it should be separated from other natural arisings and appropriately classified. Made Ground would likely be classifiable as Stable Non-Reactive waste, or Hazardous waste, should any further asbestos findings above 0.1% be encountered.

An appropriate waste classification can only be undertaken on the material due to be disposed. Further chemical testing should be completed prior to making disposal arrangements. In all cases where excess soils require off-site disposal, the materials need to be managed under the appropriate waste legislation and consideration given to any remedial techniques that could be used to improve the soil.

For Inert Waste and Hazardous Waste disposal, an allowance will need to be made for adequate Waste Acceptance Criteria (WAC) testing with appropriate consideration of the additional time and cost associated with this.

6.3 Health, Safety & Environment

Whilst few samples tested were found to have contamination at concentrations of regulatory concern, there remains a low potential for more-significantly impacted soils to be encountered; consideration should therefore be given to the level of PPE that should be provided to future site operatives. A watching brief should be established.

All work on site should be conducted in accordance with appropriate Health and Safety guidance, with particular reference to HSG66 (HSE, 1991) (Ref. 9).

Care should be taken to minimise the risk of potentially contaminative incidents occurring during redevelopment. Good working practices should be adopted during construction works in order to minimise the risk of contamination occurring as a result of spillage or leakage of fuels, oils or chemicals stored or used at the site during re-development. All such materials should be sited on an impervious base within a bund and should be adequately secured. Particular care should be taken to prevent fuel, oils or other mobile contamination sources from entering any surface water drains at the site.

Throughout all redevelopment works, due regard should be given to potential detrimental effects on the surroundings including noise, vibration, odour and dust.

6.4 Built Environment Risk Assessment

There are currently no (fully adopted) national Standards for the protection of potable water supply pipes in potentially contaminated ground. However, the UKWIR has published guidance in this respect and site testing should be undertaken with due recognition of this guidance.

On the basis of the ground conditions encountered, and due to the fact that no gross hydrocarbon contamination was encountered during the intrusive investigation it is unlikely that specific protection measures may be required for potable water supply for the development. It is recommended that consultation is undertaken with the local supplier to confirm this and a Water Pipeline Risk Assessment undertaken.

A CS1(very low risk) with respect to ground gas has been identified at the site. Therefore, it is considered unlikely that ground gas ingress into confined spaces could cause an explosive risk.

7 Conceptual Model - Pollutant Linkages

Based on the assessment of soil, groundwater and gas monitoring data, the potential contaminant linkages identified in the Phase 1 Desk Study have been updated in accordance with CIRIA Guidance C552 (Ref. 20), taking into consideration the proposed use of the site as a number of developments and upgrades to the Epsom General Hospital.

7.1 Risk Assessment Methodology

Risk assessment is the process of collating known information on a hazard or set of hazards (to determine the potential severity of any impact) along with details on the likelihood of impact on detailed receptors. Risks are generally managed by isolating the sensitive receptor or by intercepting or interrupting the exposure pathway, thus no pollutant linkages are formed and there is no risk. The following risk assessment focuses on the potential contaminants identified on the site in the context of the proposed development of the site.

CIRIA guidance C552 (Ref. 20) states that the designation of risk is based upon a consideration of both:

- The likelihood of an event (probability) (takes into account both the presence of the hazard and the receptor and the integrity of the pathway).
- The severity of the potential consequence (takes into account both the potential severity of the hazard and the sensitivity of the receptor).

Under such a classification system the following categorisation of risk has been developed and the terminology adopted as presented in Table 7.1. Further risk assessment information is presented in Appendix H.

Term	Description
Very High Risk	There is a high probability that significant harm could arise to a designated receptor from an identified hazard at the site without appropriate remedial action.
High Risk Significant Harm is likely to arise to a designated receptor from an id the site without appropriate remedial action.	
Moderate Risk	It is possible that without appropriate remedial action, harm could arise to a designated receptor but it is relatively unlikely that any such harm would be severe and if any harm were to occur, it is likely that such harm would be relatively mild.
Low Risk	It is possible that significant harm could arise to a designated receptor from an identified hazard but it is likely that at worst this harm if realised would normally be mild.
Very Low Risk	There is a low possibility that harm could arise to a receptor. In the event of such harm being realised, it is not likely to be severe.

Table 7.1 Summary of Risk likelihood categories

7.2 Contaminant Sources

The following determinants have been identified as contaminants of concern:

Soils / Made Ground

 Asbestos fibres (loose chrysotile and amosite) were visually identified in WS106 0.30m, BH103 0.5 m and BH105 0.30-0.50m (Made Ground) out of 20 samples analysed. When quantified, all positive detections were found to be below the level of detection (0.001%), and as such is not considered to pose a risk to end-users of the site, or to construction/maintenance workers. Due to the inherent variability Made Ground deposits, it is possible that there may be further asbestos fibres present on site, especially in areas where demolition has occurred – i.e. former buildings associated with the hospital and the former Epsom Work House which once resided onsite.

- Exceedances of the SSV for PAH compounds in two samples of Made Ground (BH106 0.60m & WS109 0.30m). Both exploratory holes are in the location of the car parking where localised spillages/leaks could have occurred historically.
- Made Ground of unusually alkaline pH was identified in BH106 0.50m which is a potential irritant risk, however this is likely to be associated with the presence of concrete in the sample and is not considered to pose a risk to future site users.
- An aggressive chemical environment for concrete is likely to be present, based on 5 BRE279 testing results.

Ground Gas

 Characteristic situation 1 – very low risk for methane and carbon dioxide across the site, no protection measures deemed necessary.

Groundwater

- Exceedances of the WQS for metals (Cadmium and Selenium) identified in several groundwater samples. The source of the elevated concentration of metals is unknown but could be from the overlying Made Ground or from an offsite upgradient source.
- The risk of vapour inhalation from groundwater is considered to be lowkely and has not been considered further in the assessment.

7.3 Pathways and Receptors

Potential pathways are the routes that link the receptor to the contamination. The potential pathways and receptors are provided in Table 7.2.

Table 7.2 Potential contaminant pathways and receptors

Receptors	Pathways
Human Health Future site users Maintenance workers and contractors	Direct contact (dermal), accidental ingestion Accumulation of gas in a confined space leading to asphyxiation
Controlled Waters	Vertical migration of contaminants from Made Ground Horizontal migration of contaminants into surface water
The Built Environment	Direct contact with buildings and services

7.4 Contaminant Linkages – Conceptual Model

The conceptual site model has been derived from the contaminants identified from the site investigation and assessment and the identified receptors and pathways.

Table 7.3 provides an assessment of each identified contaminant linkage (CL) to establish the potential risk to the sensitive receptors. The proposed development of a single and two storey houses with private gardens has been taken into consideration and the risk assessment has been developed based on this specific redevelopment and land use scenario.

Epsom Hospital - Main Hospital Site *Table 7.3 Contaminant Linkages*

CL No.	Source	Pathway	Receptor	Hazard Severity	Likelihood	Potential Risk and Mitigated Risk	Mitigation/ remedial action or further assessment
CL1	Exceedances of SSVs PAHs	Direct contact, accidental ingestion	Future site users, visitors, maintenance workers and contractors	Medium	Likely – exposure could occur during activities construction and maintenance works Reduced to low likelihood with mitigation	Moderate Reduced to low with mitigation	The driving exposure pathways for PAH comprise direct exposure pathways including soil ingestion/inhalation and dermal contact. Therefore, in areas with buildings/external hard-standing or similar, no such potential pollution linkage would exist, and hence no specific remedial measures would be required. However, in the areas of soft landscaping/communal garden areas, the potential contamination linkage will need to be broken by capping with a suitable thickness of uncontaminated cover soils.
CL2	Exceedances of WQS for metals in site-wide groundwater samples	Vertical migration of contaminants from Made Ground Horizontal migration of contaminants into surface water	Underlying Secondary A Aquifer Pond to the south of the site	Medium	Low likelihood of the works causing an increase in metals concentrations in groundwater Reduced to unlikely with mitigation	Moderate/ low Reduced to low with mitigation	Further groundwater monitoring would be prudent to provide better understanding/certainty of groundwater conditions, However the recorded concentrations are minor when compared to the stringent WQS, and the site lies beyond a SPZ. Undertake good material management practices during construction such as covering stockpiles to minimise leaching Provision of hardstanding for roads and parking areas will minimise leaching.

Epsom H	ospital - Main Hospital S	Site					
CL No.	Source	Pathway	Receptor	Hazard Severity	Likelihood	Potential Risk and Mitigated Risk	Mitigation/ remedial action or further assessment
CL3	Sulphates and pH	Direct Contact	Buildings, foundations and services	Medium	Likely – building foundations may encounter ground with elevated sulphates Reduced to unlikely with mitigation	Moderate/ low Reduced to low with mitigation	Select an appropriate design classification of concrete classification. Design Sulphate Class (DS) of DS-2 and an Aggressive Chemical Environment for Concrete Class (AC) of AC- 2.

7.5 Contaminant Linkages – Pollutant Linkages Discussion

Concentrations above the appropriate SSVs for PAHs (BH106 & WS109) within Made Ground deposits obtained during the intrusive investigation.

The results are not indicative of gross site wide contamination. The driving exposure pathways for the PAHs comprise direct exposure pathways including soil ingestion/inhalation and dermal contact. Therefore, in areas with buildings/external hard-standing or similar, no such potential pollution linkage would exist, and hence no specific remedial measures would be required.

BH106 is the location of a proposed footbridge and the surrounding area is covered with hardstanding roads and car parking, while WS109 is at the location of the proposed multi-storey car park. In both instances the hardstanding should be sufficient to sever the contamination pathway.

However, should the design proposals change, within any affected general landscaping areas the potential contamination linkage will need to be broken, either by physical excavation of these materials, or by capping with a suitable thickness of uncontaminated cover soils.

Minor Cadmium and Selenium exceedances of the WQS have been recorded within the groundwater samples (only marginally above the stringent WQS criteria). These are minor and possibly background concentrations. The site is not within a Source Protection Zone (SPZ) and no groundwater abstractions are within influencing distance of the site. Therefore, the risk to Controlled Water is deemed low.

Design Sulphate Class (DS) of DS-2 and an Aggressive Chemical Environment for Concrete Class (AC) of AC-2 is recommended for the site.

In order to satisfy and enable the discharge of the likely future relevant Planning Conditions (including precommencement conditions), it is recommended that the findings of this report (with respect to contamination) be formalised in a development-specific Remediation Statement (detailing the development scheme and most appropriate remedial option) and be submitted to the Local Planning Authority for their approval.

8 Geotechnical Assessment

8.1 General

The proposed development plans include a multi-storey car park, connecting footbridge, single or double storey extensions to two buildings, and construction of a three-storey modular building. The use of the Site will remain as a working hospital.

The proposed site/formation level, settlement tolerance criteria and structural loadings have not been provided and will need to be considered during detailed design. It is assumed that the site levels will remain unchanged for the assessment. The following assessment and recommendation are for guidance and will need to be reviewed when design details are available.

8.2 Ground Conditions

The ground conditions generally confirm the published geology identified in the Desk Study (Ref. 3), comprising Made Ground overlying River Terrace Deposits, comprising granular material. Made Ground was encountered within every exploratory hole.

The River Terrace Deposits were not encountered to the very west of the site (WS106, WS107 & WS111), where Made Ground directly overlies the bedrock formations. SPT N-Value refusal were encountered within WS108 (1.50mbgl), WS109 (3.38mbgl), WS110 (1.58mbgl) and WS112 (2.38mbgl).

The London Clay Formation and the Lambeth Group (bedrock) was encountered during the investigation within the majority of exploratory holes. All positions terminated either within the River Terrace Deposits or the Bedrock. The extent of the London Clay or the Lambeth Group was not proven.

8.3 Obstructions

Historical mapping indicates that the Epsom Union Workhouse, and former structures associated with the Epsom General Hospital once resided onsite, which have been demolished. No evidence of buried structures or services was encountered during the site investigation, however there is potential for buried structures or foundations and deeper Made Ground to be present locally.

Obstructions may require removal where they may influence future development including foundations, pavements and services as they may act as a hard spot creating differential settlement issues.

8.4 Foundations

This assessment has been split to consider the broad development options.

8.4.1 Area A – Multi-storey Car Park & Connecting Footbridge

Proposed structural loads have not been provided for car park or connecting bridge. Three exploratory holes are present within the Car Park area (BH105, WS109 & WS110), while two exploratory holes are pertinent for the connecting footbridge (BH106 & BH107).

Multi-storey - Ground Conditions: Made Ground between depths of 0.90 and 1.00mbgl, with River Terrace Deposits encountered between 1.00m and 3.80mbgl, basal unit encountered Lambeth Group (Clay & Sand) to 15.00mbgl. Groundwater entries of between 2.00m and 2.50mbgl within the River Terrace Deposits.

Footbridge – Ground Conditions: Made Ground between depths of 1.70 and 2.00mbgl, with River Terrace Deposits encountered between 1.70m and 3.40mbgl, basal unit encountered London Clay (Clay) to 15.00mbgl. Groundwater not encountered during investigation works but groundwater was monitoring at a depth of between 2.21m and 2.25mbgl within the River Terrace Deposits.

Made Ground soils are not considered to be a suitable founding stratum. Due to the variable depth range that the River Terrace Deposits have been encountered, and likely shallow ingress of water within any shallow foundation excavations, the likely significant loadings required for both the multi-storey car park, and the proposed footbridge, a piled foundation solution is recommended.

Epsom Hospital - Main Hospital Site

The target founding stratum will ideally be the London Clay Formation or the Lambeth Group due to their fairly uniform properties and the increase in strength with depth which has been recorded typically across the site. It is envisaged that a pile design will be able to utilise both end bearing and shaft friction properties.

8.4.2 Area B – 3 Storey Modular Building

Proposed structural loads have not been provided for the 3-storey modular building. Two exploratory holes are present within this area (WS111 & WS112).

The shallow deposits (i.e. less than 2m) within this area are variable, which include Made Ground to depths of between 1.00m and 1.50mbgl, River Terrace Deposits only in WS122 between 1.00m and 2.38mbgl and London Clay deposits from 1.50m to 5.45mbgl in WS112. Groundwater was not encountered during the intrusive investigation or during the monitoring period.

Made Ground is generally not a suitable founding stratum due to its inherent variability. A number of foundation solutions are deemed viable. Should light to moderate loadings be required then a shallow foundation solution may be viable. Raft foundations would help to avoid any differential settlement considering the variable geology which has been encountered.

For more substantial loadings then mini-piles or vibrostone or concrete columns would be me more suitable as a founding solution. The subsequent foundations should be 'rafted strips', to avoid any differential settlement.

8.4.3 Area C – Single Storey Extension

Proposed structural loads have not been provided but are anticipated to be in the order of <50kPa for the single storey extension. One exploratory hole is present within this area (WS108).

Made Ground was encountered to a depth of 0.40mbgl, while the underlying River Terrace Deposits were encountered to a depth of 1.50mbgl where an SPT N-Value refusal (50) was recorded. No groundwater entries were recorded during the intrusive investigation or during the monitoring period.

Based upon the ground conditions encountered shallow strip foundations are likely to be a suitable foundation solution for light to moderately loaded structures. This is on the assumption that the River Terrace Deposits are laterally continuous within this area.

For indication purposes the River Terrace Deposits (very dense granular strata) are likely to provide an appropriate allowable bearing capacity a depth of 1.20m bgl. Foundations should be extended 300mm below loose materials such as this to more competent dense materials.

Foundations should be within consistent strata to reduce the risk of differential settlement and a suitably qualified geotechnical engineer should confirm the ground conditions on site during the works. This is important as the River Terrace Deposits are not laterally continuous beneath the subject site.

8.4.4 Area D – Single Storey Extension

Proposed structural loads have not been provided for the single storey extension. Two exploratory holes are present within this area (WS106 & WS107).

Made Ground deposits were encountered to a depth of 1.00mbgl, overlying London Clay to 5.45mbgl. No River terrace Deposits were encountered. Groundwater entries were not recorded during the intrusive investigation, however during the monitoring period levels were observed between 1.14m and 2.57mbgl.

Based upon the ground conditions encountered shallow strip or pad foundations are likely to be a suitable foundation solution for light to moderately loaded structures.

For indication purposes the firm to stiff clay deposits of the London Clay are likely to provide an appropriate allowable bearing capacity at a depth of 1.2m bgl within stiff to very stiff clays. In general an increase in strength with depth was observed within the London Clay Deposits, if soft spots are encountered foundations should be taken deeper to more competent stiff materials.

Foundations should be within consistent strata to reduce the risk of differential settlement and a suitably qualified geotechnical engineer should confirm the ground conditions on site during the works.

8.5 Foundations – General Comments

Consideration will need to be given to future tree planting and the proximity of trees to foundations with regard to the low to high plasticity of the cohesive subsoils in accordance with NHBC guidance Chapter 4.2.

Detailed pile designs (in terms of pile type, depths, and method of installation) would be dependent upon the required working loads and should be undertaken in conjunction with a reputable, specialist, piling contractor; ideally with local experience.

Low level contamination has been encountered on site, as such piling works should adhere to the EA guidance on piling through contaminated soils, so as to prevent any mobilisation of contamination into underlying natural soils.

Any piling works should adhere to the EA guidance on piling through contaminated soils, so as to prevent any mobilisation of contamination into underlying natural soils. Furthermore piling may create migration pathways for hazardous ground gases, which have been identified at the subject site.

Where new structures are extensions to existing structures, or bridging between two existing structures, the choice and detailed design of foundation system will need to take into account the likely relative movements between the existing and new-build, and also the movement induced on the existing structure by temporary works or the newly applied loadings.

8.6 Ground Floor Slabs

The shallow deposits are variable and comprise Made Ground, River Terrace Deposits and the London Clay/Lambeth Group.

In accordance with NHBC guidance 5.1 "substructure and ground bearing floors", shrinkable soil, expansive materials or other unstable soils may require suspended floor construction. Shrinkable soils are classified as those containing more than 35% fine particles (silt and clay) and have a modified Plasticity Index of 40% or greater (see NHBC Chapters 4.2 'Building near trees' (each section) and 5.2 'Suspended ground floors' (each section)).

The site soils therefore do meet this criteria of "shrinkable soil", and the shallow soils are found to be variable, hence suspended ground floors are likely to be required to avoid problems of heave and shrinkage settlements.

Furthermore, due to the variability in geology suspended floor slabs also recommended.

8.7 Excavations

It is likely that the majority of the overlying Made Ground, cohesive River Terrace Deposits and the London Clay/Lambeth Group could be easily excavated using a conventional backhoe excavator. However due to the dense nature and depth of the granular River Terrace Deposits some hard digging or ripping may be required at depth. Due to the presence of fine granular material in places, some temporary support or battering back may be required for deep excavations.

Groundwater has been indicated to be present from 1.11mbgl, so excavations may be prone to groundwater ingress and subsequent collapse, unless dewatering methods such as sumps are used. Trench support and battering may also be required.

8.8 Pavement and Road Design

Areas of hardstanding and car parking are proposed at the site.

No in situ California Bearing Ratio (CBR) tests were undertaken as part of the investigation.

It is recommended that testing be undertaken during earthworks at the proposed formation level. It is anticipated that a CBR in the order of 2% will be achievable in this material pending further testing. Any topsoil should be removed prior to construction. The subgrade material will be frost susceptible and full pavement thickness will be required.

8.9 Aggressive Chemical Environment for Below Ground Concrete

With reference to guidance outlined within BRE document SD1 "Concrete in aggressive ground" (2005) (Ref. 21), the test results returned for sulphate and pH values across the site correspond to a Design Sulphate Class (DS) of DS-2 and an Aggressive Chemical Environment for Concrete Class (AC) of AC- 2.

The London Clay is in places known to be pyritic. From SD1 utilising the methodology stated within section C5.1.2, 5 samples were analysed for BRE 279. None of the samples were deemed to contain pyrite. As a precautionary approach the Design Sulphate value has been selected due to the total potential sulphate content.

9 Conclusions and Recommendations

9.1 Geo-Environmental

An intrusive ground investigation was undertaken to investigate and assess areas of potential concern identified in the Arcadis Desk Study Report (Ref. 3) and to provide preliminary geotechnical advice on ground parameters to inform design of proposed developments.

9.1.1 Human Health

- Asbestos fibres were identified in three samples (however following quantification, none were found to be above the laboratory level of detection) and exceedances of the SSV were identified for PAHs in two samples of Made Ground.
- The results are not indicative of gross site wide contamination. The driving exposure pathways for the PAHs comprises direct exposure including soil ingestion/inhalation and dermal contact. Therefore, in areas with buildings/external hard-standing or similar, no such potential pollution linkage would exist, and hence no specific remedial measures would be required.
- BH106 is the location of a proposed footbridge and the surrounding area is covered with hardstanding, while WS109 is at the location of the proposed multi-storey car park. In both instances the hardstanding should be sufficient to sever the contamination pathway. However, should the design proposals change, within any affected general landscaping areas the potential contamination linkage will need to be broken, either by physical excavation of these materials, or by capping with a suitable thickness of uncontaminated cover soils. Early consultation with regulatory bodies will be key in taking the site forward for development.
- Gas concentrations and flow rates recorded at the subject site indicate that the site is classified as Characteristic Situation 1, as such no special protection measures are likely to be required within the proposed structures.
- In order to satisfy and enable the discharge of the likely future relevant Planning Conditions (including pre-commencement conditions), it is recommended that the findings of this report (with respect to contamination), be submitted to the Local Planning Authority for their approval.

9.1.2 Controlled Waters

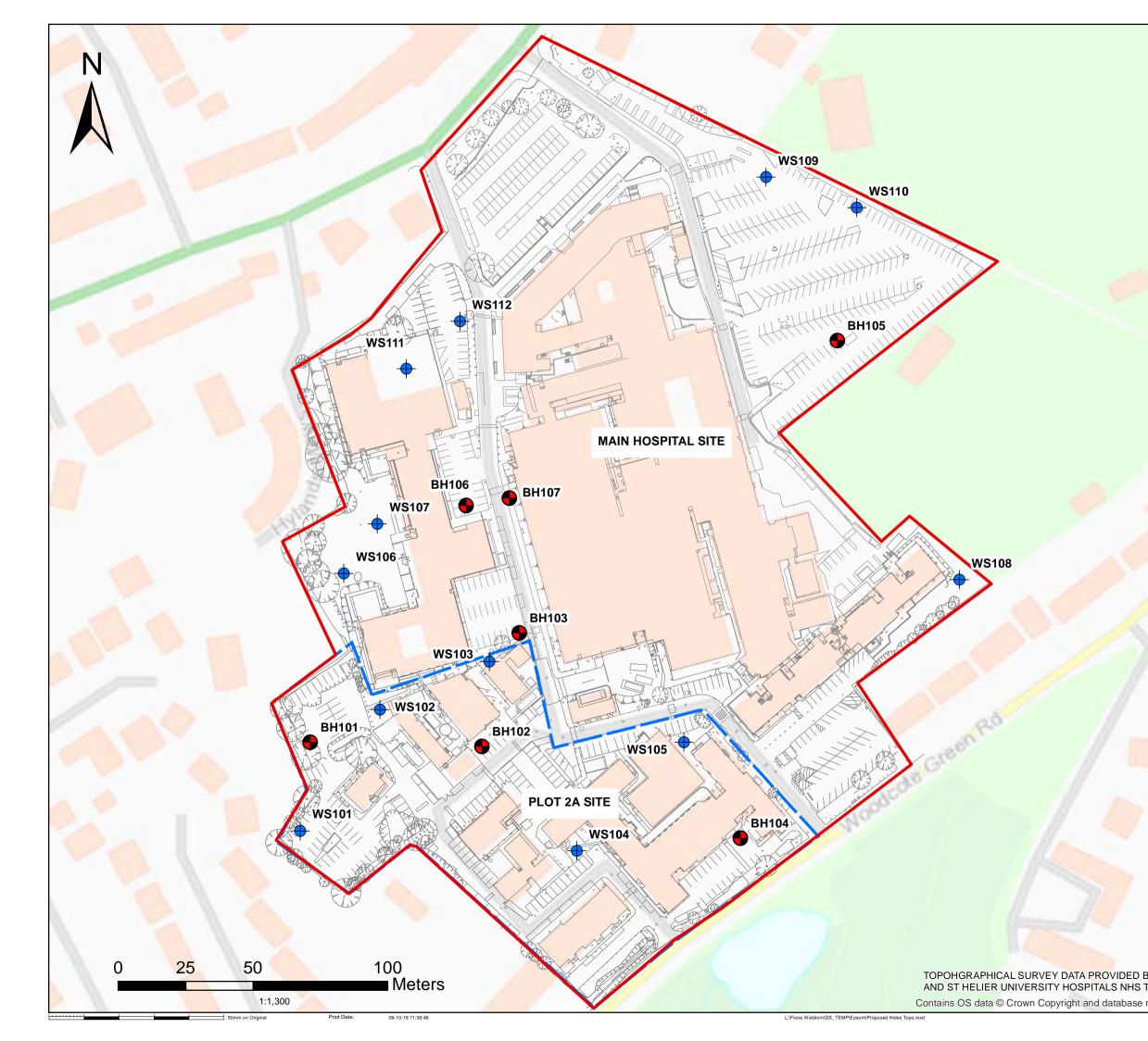
- Minor exceedances of the WQS were identified in a number of samples for metals.
- Minor Cadmium and Selenium exceedances of the WQS have been recorded within the groundwater samples, however these are minor and most probably representative of background concentrations. The site does not lie within a Source Protection Zone (SPZ) and no groundwater abstractions are within influencing distance of the site. Therefore, the risk to Controlled Waters is deemed low.

9.2 Geotechnical

Based on the results of the intrusive investigation, geotechnical laboratory testing and *in situ* testing the following indicative geotechnical conclusions and recommendations have been made;

- Area A Car Park and Foot Bridge: A piled foundation solution is recommended, the target founding stratum will ideally be the London Clay Formation or the Lambeth Group due to their fairly uniform properties and the increase in strength with depth which has been recorded typically across the site. It is envisaged that a pile design will be able to utilise both end bearing and shaft friction properties.
- Area B 3 Storey Modular Building: Should light to moderate loadings be required then a shallow foundation solution may be viable. Raft foundations would help to avoid any differential settlement considering the variable geology which has been encountered. For more substantial loadings then minipiles or vibrostone columns would be me more suitable as a founding solution.
- Area C & D Single Storey Extensions: Based upon the ground conditions encountered shallow strip or pad foundations are likely to be a suitable foundation solution for light to moderately loaded structures.

Epsom Hospital - Main Hospital Site


- Detailed geotechnical design should be undertaken when the loading and settlement criteria are available.
- Due to the variable geology encountered and potentially shrinkable soils, suspended floor slabs are recommended.
- In deep excavations, excavations may be prone to collapse, trench support may be required. Sump pumping may be required if groundwater ingress is encountered.
- An aggressive chemical environment for concrete is thought to be present within the London Clay and Lambeth Group. Below ground concrete should be designed to meet the specifications of DS2, AC2.
- Where new structures are extensions to existing structures, or bridging between two existing structures, the choice and detailed design of foundations will need to take into account the likely relative movements between the existing and new-build, and also the movement induced on the existing structure by temporary works or the newly applied loadings.

10 References

- 1.) Arcadis Consulting, Epsom Hospital Plot 2A Phase1 Geo-Environmental Desk Study, July 2018.
- 2.) Arcadis Consulting, Epsom Hospital Plot 2A Phase 2 Geo-Environmental and Geotechnical Assessment Report, September 2018.
- 3.) Arcadis Consulting, Epsom Hospital Main Hospital Site Phase 1 Geo-Environmental Desk Study, August 2018.
- 4.) British Geological Survey, Geoindex Website [online] http://www.bgs.ac.uk/geoindex/, accessed September 2018.
- 5.) BGS Map Sheet of Reigate.
- 6.) Public Health England UK Map of Radon [online]. Available at: http://www.ukradon.org/information/ukmaps, accessed September 2018.
- 7.) Land Quality Management/ Chartered Institute of Environmental Health S4ULs for Human Health Risk Assessment, Land Quality Press, Nottingham. "Copyright Land Quality Management Limited reproduced with permission; Publication Number S4UL3223. All rights reserved.
- 8.) Contaminated Land: Applications in Real Environments (CL:AIRE), 2014. Development of Category 4 Screening Levels for Assessment of Land Affected by Contamination SP1010.
- 9.) Health & Safety Executive, Health & Safety Guidance 66, Protection of workers and the general public during the development of contaminated land, 1991.
- 10.) Construction Design and Management (CDM) Regulations 2015.
- 11.) Health & Safety Executive, Health & Safety Guidance EM9, Disposal of Asbestos Waste, 2001.
- 12.) The Water Framework Directive (Standards and Classification) Directions (England and Wales) 2015.
- 13.) The Water Supply (Water Quality) Regulations 2016. SI 2016/614.
- 14.) Water Framework Directive UK Technical Advisory Group, River and Lake Assessment Method, Specific Pollutants (Metals) Metal Bioavailability Assessment Tool (M-BAT). July 2014.
- 15.)CIRIA C665. Assessing the risks posed by hazardous ground gases to buildings. 2005.
- 16.)Wunderground historic weather data [online]. Available at: https://www.wunderground.com/, Accessed September 2018.
- 17.)British Standard BS8485:2015. Code of Practice for the design of protective measures for methane and carbon dioxide ground gases for new buildings.
- 18.)CL:AIRE, Research Bulletin 17, A Pragmatic Approach to Ground Gas Risk Assessment, November 2012.
- 19.) Health and Safety Executive (HSE), EH40/2005 Workplace Exposure Limits, 2nd Edition, 2011.
- 20.) CIRIA C552 Contaminated Land Risk Assessment A guide to good practice. 2001.
- 21.)BRE Special Digest 1:2005, Concrete in Aggressive Ground.

Epsom Hospital - Main Hospital Site

APPENDIX A - Exploratory Hole Location Plan

		ORATO LOCAT				
	-	BH				
	•	WS				
	Туре					
	- 71	MAIN	SITE			
		BOUN (APPR	DARY			
		PLOT	2A			
		BOUN				
		(APPR	ROX.)			
	01 10/9/18 1	ST ISSUE		FW	GF	GF
	Rev Date D	escription		Drawn	Check	Approv
	Client					
		ND ST HELIE				
1	NHS TRU		ALS			
1						
1						
1						
1						
	GI	ARCAL		NUMBER OF	a di ante a	
				At assets		
	Registered offi Manning Hous	e Unit 17 Innov	ation Centre			
	22 Carlisle Pla London SW1P 1JA	ce Bridge of Dor Aberdeen AB Tel: 44 (0)122	23 8GX			
	www.arcadis.c					
-	TITLE:					
		EPSOM H				
	F					
				_/\\\		
	Designed	F.W	Date 10SEP18 Date		igned igned	
1	Drawn	F.W	10SEP18 Date		igned	
1	Checked	G.F	10SEP18 Date		igned	
1	Approved Scale:	G.F 1:1,300	10SEP18 Datum:		AOD	
11	Original Size:	A3	Grid:		NOD DS	
11	Suitability Code:	Sx	Project Numbe		002022	1
111	Suitability Descriptio	n:				
B <mark>Y EPS</mark> OM TRUST		Suitability E Suitability descrip				
right 2018	Drawing Number: 10020221	-ARC-03-X	X-DR-77	2-000		evision: 01
	10020221	,				reserved

APPENDIX B - Standard Procedures

C0 General Principles

This ground investigation was undertaken in general accordance with the principles of BS EN 1997-1 [1] and BS EN 1997-2 [2] and the advice given in BS5930:2015 [8], which, provides complimentary guidance on the application of the primary standards. Where the requirements of the ground investigation specification differ from these primary standards, the investigation methodology was adapted as required and specific notes regarding methods and techniques employed were made in the appropriate report sections.

C1 Buried Services

Service clearance was undertaken in accordance with Arcadis' common operating practice COP SA1. This document details the methods and safe working practices used to undertake excavations safely. Prior to breaking ground, services plans were consulted and the area scanned using a Cable Avoidance Tool (CAT) with detected signals marked on the ground. For all investigation positions, other than for machine excavated trial pits, hand excavated inspection pits are completed to 1.20 m bgl prior to the use of drilling and boring plant.

C2 Sampling requirements

The selection of sample types and sampling techniques has been chosen to take account of the soil fabric, size and quality of sample required based on whether the soils mass properties or the intact material properties of the ground are to be determined in subsequent laboratory tests. BS EN ISO 22475-1 [4] describes three generic sample groups that are:

- a. Sampling by drilling. Generally a disturbed sample recovered from the drilling tool or digging equipment, typically meeting Class 3 to Class 5 requirements, with the recovered material being stored in bulk bags or sealed jar or tub containers.
- b. Sampling by sampler. Typically referred to as open tube or drive sampling in which a tube with a sharp cutting edge is driven into the ground either by static thrust or dynamically driven to give a relatively undisturbed sample of Class 1 or Class 2 but may result in a Class 3 sample.
- c. Block sampling. Cylindrical large diameter samples or cuboid hand-cut samples usually relatively undisturbed Class 1 and Class 2.

The open-tube sampling equipment used on the site was of a type and design that conformed to BS EN ISO 22475-1. For the purpose of this ground investigation block sampling was not required.

Generally samples were assessed on site and any unexpected deterioration in sample quality was reported to the ground engineer by the lead drilling technician.

Sufficient and representative samples were taken to allow the geo-mechanical properties of the ground to be adequately characterised and to enable the sequence of soil strata to be described by an engineering geologist or geotechnical engineer.

Where samples have been taken for chemical tests the drilling method attempted to adopt dry drilling over the sampling range that generally was achieved by the use of drill casing to separate and isolate the upper soil layers and exclude groundwater. Cross-contamination was further reduced by regular cleaning of sampling tools. Sample integrity was maintained by sealing samples immediately on collection and storing the samples in a temperature controlled cool box. Samples were despatched from the site at the end of the shift on which they were collected or as required in the project specification. Details of best practice storage, preservation and decontamination measures undertaken are given below:

Task	Soil	Groundwater	Ground Gas
Storage	Glass jars and vials supplied by the laboratory were used for the collection of soil samples to be	Glass vials supplied by the laboratory were used for the collection of samples to be analysed for volatile	1.4L Canisters supplied by the laboratory.

Epsom Hospital - Main Hospital Site

	analysed for volatile compounds. Plastic one-litre tubs were used to collect soil samples for metals analysis.	compounds. Samples to be analysed for lower volatility compounds were stored in laboratory prepared glass bottles.	
Preservation		s practicable to minimise headspace imise the potential for volatilisation and arbon compounds prior to analysis.	Not required.
Decontamination	Disposable gloves were worn and changed between sample collection to prevent cross- contamination.	Groundwater samples were collected using dedicated disposable tubing / bailers, that were changed between monitoring well locations in order to prevent cross-contamination.	Disposable gloves were worn and changed between sample collection to prevent cross contamination.
Transport	requests were recorded on the labo	e boxes provided by the laboratory. Sam ratory chain of custody form included wi s. Samples were dispatched to the labor	th samples, prior to

C3 Sample description

Sample description was undertaken by the Arcadis site geologist in accordance with BS 5930: 2015. The descriptions of the individual samples were used to identify the sequence of strata at the exploratory hole location and from which representative exploratory hole logs were drawn.

C4 In situ testing

In situ geotechnical tests were undertaken taking account of the investigation scope and requirement to attain the appropriate parameters required in the geotechnical design. The tests were undertaken in accordance with the requirements of the relevant parts of BS EN ISO 22476 [5, 6, 7] and other methods as follows:

Dynamic probing

Dynamic probes were undertaken in general accordance with BS EN ISO 22476-2, BS EN 1997-2 and the national annex to BS EN 1997. The tests were generally made using the super-heavy DPSH-B configuration of the apparatus, however, it should be noted that the basis for selection of the type of dynamic probe should be a consideration of the driving energy in relation to the type of ground conditions anticipated at the site.

Where adequate correlation with borehole data is available an interpretation of the estimated soil type may be made, however, it should be noted that probing can give unreliable results in mixed soils.

Standard penetration testing

Standard penetration tests were carried out in accordance with BS EN ISO 22476-3, BS EN 1997-2 and the national Annex to BS EN 1997-2. The test records are presented on the borehole logs as blow counts for each increment with the N-value as the total number of blows of the four main test increments.

Where the N-value exceeds a total of 50 blows, the test reports the penetration in millimetres for the last test increment recorded, and the N value is indicated as greater than 50,

e.g. 4,5/12,14,18, 6 for 10 mm

indicates that the seating blows (4 and 5) were completed and that the test terminated in the 4th increment after penetrating 10 mm.

Where the seating blows exceeded 25 blows for less than 150 mm; the test was stopped and the rods remarked after which, the main drive was continued. The test is then reported as the number of blows in each seating drive for the recorded penetration with the results of the main drive given as above,

e.g. 14/11 for 45 mm/12,14,16, 8 for 10 mm.

In certain circumstances where groundwater in-flow may affect the test, particularly in fine sand or silt, low SPT blow counts may be recorded. Where the SPT blow count was very low, N values of 5 or less, the test

Epsom Hospital - Main Hospital Site

was, at the discretion of the site engineer, continued for a further 300 mm, recording blows for each 75 mm increment. **This is not** a standard penetration test value, it does however give an indication of potential disturbance to the ground.

California Bearing Ratio

In situ California Bearing Ratio (CBR) tests were carried out in general accordance with the requirements of BS 1977-9:1990, 4.3 [10]. The CBR is a strength test that is generally concerned with pavement design and the control of pavement sub grade construction, as such it is a test that is most suited to soils with a maximum particle size not exceeding 20 mm.

TRL Dynamic cone penetrometer

The TRL DCP is a device developed by the TRL to assess the California Bearing Ratio of road sub-base by correlation. As such the device was developed for use in a limited range of soil types. The test has no formal standard the test methodology and its use is discussed in TRL report PR IN 277-04 [11].

C5 Data transfer format

The data collated during the ground investigation has been organised and managed using the "AGS data format" that allows data transfer between different disciplines and organisations in accordance with BS 8574 [9].

C6 References

- 1. BS EN 1997-1. 2004. Eurocode 7: Geotechnical Design. Part 1 General Rules. British Standards Institution, 2013 (revised text).
- 2. BS EN 1997-2. 2007. Eurocode 7: Geotechnical Design. Part 2 Ground Investigation and testing. British Standards Institution, 2010 (revised text).
- 3. BS EN ISO 22282-1:2012. Geotechnical investigation and testing Geohydraulic testing. Part 1: General Rules. British Standards Institution.
- 4. BS EN ISO 22475-1. Geotechnical investigation and testing Sampling methods and groundwater measurements Part 1 Technical principles for execution.
- 5. BS EN ISO 22476-1:2015. Geotechnical investigation and testing Field testing Part 1: Electrical cone and piezocone test. British Standards Institution
- 6. BS EN ISO 22476-2. Geotechnical investigation and testing Field testing Part 2: Dynamic Probing. British Standards Institution
- BS EN ISO 22476-3 2005. Geotechnical investigation and testing Field testing Part 3: Standard penetration test. British Standards Institution
- 8. BS 5930: 2015. Code of practice for ground investigation. British Standards Institution.
- 9. BS 8574. Code of practice for the management of geotechnical data for ground engineering projects.
- 10. BS 1377-9. 1990. Methods of test for soils for civil engineering purposes. Part 9: In-situ tests. British Standards Institution.
- TRL. 2004. Dynamic cone penetrometer tests and analysis. TRL Technical Report PR IN 277-04. Transport Research Laboratory, Crowthorne, England.

Epsom Hospital - Main Hospital Site

APPENDIX C - Exploratory Hole Logs

Key to Exploratory Hole Symbols and Abbreviations

Environmental soil sample

SPT split spoon sample

Gas sample

Liner sample

L

SPT

Environmental water sample

U

UT

W

SAMPLE TYPES

В	Bulk disturbed sample	ES
С	Core sample	EW
CBR-D	Disturbed sample from CBR test area	G

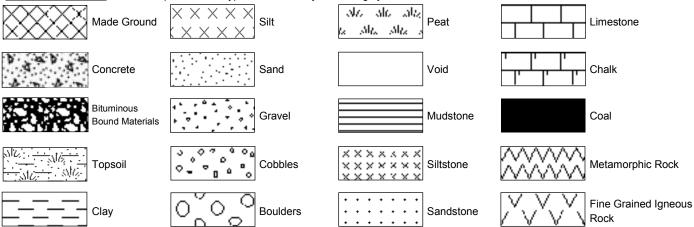
- CBR-U Undisturbed sample from CBR test area
- D Small disturbed sample

IN-SITU TESTING

- SPTs Standard Penetration Test (using a split spoon sampler)
- SPTc Standard Penetration Test (using a solid 60 degree cone)
- N Recorded SPT 'N' Value *
- -/- Blows/Penetration (mm) after seating blows totalling 150 mm
- MX Mexi Probe Test (records CBR as %)
- HV Hand Shear Vane Test (undrained shear strength quoted in kPa)
- PP Pocket Penetrometer Test (kg/m³)
- () Denotes residual test value
- PID Photo Ionisation Detector (ppm) *
- Kf/Kr Permeability Test (f = falling head, r = rising head quoted in ms⁻¹)
- HPD High Pressure Dilatometer Test (pressure meter)
- PKR Packer / Lugeon Permeability Test
- CBR California Bearing Ratio Test

ROTARY CORE DETAILS

- TCR Total Core Recovery, %
- SCR Solid Core Recovery, %
- RQD Rock Quality Designation (% of intact core >100 mm)
- FI Fracture Spacing (average fracture spacing; in mm, over indicated length of core) * *
- NI Non-Intact Core
- AZCL Assumed Zone of Core Loss

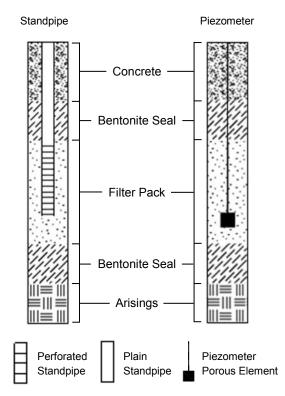

GROUNDWATER

Groundwater strike

Standing water level after 20 minutes; 1st, 2nd etc (number denotes level order)

STRATA LEGENDS - Note: Composite strata types are shown by combining symbols

* Where a single value is quoted this is the uncorrected 'N' value for a full 300 mm test drive following a seating drive of 150mm. Where the full test drive penetration is not achieved the number of blows is quoted for the penetration below the test total of 300mm, e.g.: 50/75.


* * The minimum, average and maximum are shown e.g. 5/45/125

Undisturbed sample

Water sample

Undisturbed thin wall sample

STRATUM BOUNDARIES

Unit boundary

BH103

lient	-		-	ital Site sity Hospitals I	NHS T	rust		10020221 Easting (OS mE) 520376.54	59.23 Northing (OS mN) 159824.13	20/08/ End Date 20/08/		1:8 Sh	50 leet 1	of 2
SAM	PLES		TE	STS	er es	PROGF	RESS		STRATA					la et
Depth	Type No.	/ Depth	Type/ No.	Results	Water Strikes	Date Time	Casing Water		Description		Legend	Depth (Thickness)	Level	Insta Back
		-				20/08/2018 08:00		MADE GROUND: Re	tumen bound material eddish brown sandy GRAVEL. Gi ular fine to coarse red brick.	ravel is		(0.15) 0.15 (0.35)	59.08	
0.50 - 1.0 0.50 - 1.0		- 0.50 - 0.50 -	PID PID	<1ppm <1ppm				MADE GROUND: Ve gravelly CLAY. Grave	ery soft to soft dark brownish grey el is angular to subrounded fine to			0.50	58.73	4
1.20 - 1.7	0 B3	- - - 1.20	SPT(C)	N=17 (2,3/4,4,4,5)				Drick, concrete, sand	Istone, limestone and flint.			(0.70) - 1.20	58.03	
1.20 - 1.7		- 1.20	PID	<1ppm					gish brown slightly clayey sandy o subrounded fine to coarse flint ar DEPOSITS]			1.20	-	
2.00 - 2.1		- - - 2.00	SPT(C)	N=13 (2,2/3,4,3,3)						() 	· • • • • • • • • • • • • • • • • • • •	(1.40)	+ + +	
2.00 - 2.5	0 B6	- - -								(* 1997) 1997 1997 1997 1997 1997 1997 1997			+ + + +	
		E						Soft light greyish bro [LAMBETH GROUP]				2.60	56.63	
3.00 - 3.1	0 D7	- 3.00	SPT(S)	N=8 (1,1/2,2,2,2)					1	-		(0.80) -	I +	
		-								-		2.40		
		-						Soft to firm dark grey [LAMBETH GROUP]		-		3.40	55.83	
		-								-			+	1
4.00 - 4.1 4.00 - 4.4		-		Ublow=40						-		-	÷	
4 50 4 6	0 010	-										(2.00)	ł	
4.50 - 4.6	0 D10	-								-			ļ	
5.00 - 5.1	0 D11	- - - 5.00	SPT(S)	N=14 (1,2/3,3,4,4)						-		-	+	//
5.00 - 5.5		-		14-14 (1,2/0,0,4,4)									ł	1
		-						Firm light grey CLAY				5.40	53.83	
		-						[LAMBETH GROUP]]				Ì	$\langle \rangle$
6.00 - 6.1	0 D13	-								-		(0.90)	+	
		-										6.30	52.93	
6.50 - 6.9	5 U14	-		Ublow=60				[LAMBETH GROUP]	sionally mottled light green CLAY]	. –		-	ł	
		-											ļ	17
7.00 - 7.1	0 D15	-								_		(1.20)	+	
		-								-			+	
		-							grey to purplish brown CLAY.			7.50	51.73	1
		-						[LAMBETH GROUP]]				+	
8.00 - 8.1	0 D16	- 8.00	SPT(S)	N=24 (3,4/5,6,6,7)								-	÷	
		-								-			ļ	
		-								-			+	
		-								-			ļ	
9.00 - 9.1	0 D17	-								-		-	†	
9.50 - 9.9	5 U18	-		Ublow=80						-		-	+ + +	
		-								-			ţ	
0.00 - 10.		-										-	+	2
From	To	TECHNIC	<u>VDE</u> ype	Hard Strata From To	Duratic	n Date/T		VATER OBSERVATION		SING DIAMETE			<u>R ADD</u> το ∖	ED /olume
0.00 1.20	1.20 15.00		ction Pit ercussion						300 1.20 152 3.00 140 15.00		3.00			
emarks orehole 1	terminate	d at target	depth of	15.00 m bgl.										
o grouno stallatio	dwater er ns: 0.00 i	n - 14.00 n	, damp fro n plain 50	m 14.00 m bgl. mm ID standpipe pi				slotted 50 mm ID star	ndpipe piezometer. viated sand filter around respons	e zone to base	ofhole	Tarm	ination D	enth.
		ntamination			ure helle	י אבמו נט נטף	orrespo	-136 20116, 1.00 III PIU	Mateu sanu iliter arounu responsi	S ZONE IO DASE	or note.	lerm	15.0	
_	adis Cymru Hous Mellons Business k diff	Unless	othorwic	e stated:		Equipme	nt Llead		Contractor			gged By	Check	

ogged By MW IP

BH103

ent		al - Maiı . Helier		ital Site sity Hospitals N	IHS Tr	ust		10020221 Easting (OS mE) 520376.54	59.23 Northing (OS mN 159824.13	1)	End Da	8/2018 ate 8/2018		50 heet 2	of 2
SAMF				STS	1	PROGR	ESS		STRA	TA				T	
Depth	Type/ No.	Depth	Type/ No.	Results	Water Strikes	Date Time	Casing Water		Description			Legend	Depth (Thickness)	;) Level	Inst Bacl
	NO.	-	INO.				water	Stiff to very stiff light	grey to purplish br			<u> </u>		+	
		-						[LAMBETH GROUP]			F	-	ţ	
		_										F		Ī	$\langle \rangle$
														I	
00 - 11.1	0 D20	— 11.00 -	SPT(S)	N>50 (7,11/14,21,15 for 50mm)										+	$\langle \rangle$
		-		,										ţ	
		-												ŧ	
		-											(5.70)	ł	
00 - 12.1	0 D21	-												1	$\langle \rangle$
		-										F	-	ţ	$\langle \rangle$
50 - 12.9	-	-		Ublow=100								[ŧ	
50 - 12.8	5 022	-		Obiow-100								[-	Ŧ	
		-										<u>[</u>		ţ	1
00 - 13.1	0 D23	-										<u>L</u>		+	
		-						Very stiff greenish gr [LAMBETH GROUP	ey sandy CLAY.				13.20	46.03	
		_							1				-	Ŧ	$\langle \rangle$
		-											-	ţ	
00 - 14.1	0 D24	- 14.00	SPT(S)	N>50 (8,17/33,17 for										+	4
		-		45mm)									(1.80)	İ	
		-											-	ļ	F
		-											-	ţ	
15.00	Das	-				00/00/00/0							15.00	+	
15.00	D25	-				20/08/2018 16:00	3.00					1	15.00	+ 44.23	
		-												ł	
		-												ţ	
		-												ļ	
		-												+	
		-												ŧ	
		-												İ	
		-												Ŧ	
		-												ļ	
		-												+	
		-												ł	
		-												ł	
		-												ļ	
		-												+	
		-												ţ	
		-												1	
		-												Į	
		-												ļ	
		-												Ť	
		-												ŧ	
		-												ţ	
		-												ţ	
		-												+	
		-		<u> </u>										1	
		TECHNIC		CHISELLIN Hard Strata		-				HOLE/CASI					
om 00	To 1.20	Inspec	/pe ction Pit	From To	Duratio	n Date/Ti	me	Strike At Time Elapsed Ris	e To Casing Sealed	300 1.20	Casing Dia. 152	Depth 3.00	From	To	Volume
20	15.00	Cable P	ercussion							152 3.00 140 15.00					
				15.00 m bgl.	1					1	<u> </u>				
	s: 0.00 n	n - 14.00 m	n plain 50					n slotted 50 mm ID sta onse zone, 1.00 m plu			zone to bas	e of hole	Torn	nination D	Depth
cfill: Fl		tamination		rete, 13.30 m bentom	te pene	i sear to top	orresp	onse zone, 1.00 m più	vialeu sanu iiilei ai	ound response z			lien	ninauon L	- P 11

BH105

ent		4 11-11	11					Easting (OS mE)	Northing (OS mN	1)	End Date		<u> </u>		
		τ. Helier		sity Hospitals N				520494.59	159932.65 	ΤΛ	23/08	2018	Sh	eet 1	ot 2
SAMF Depth	Туре	Depth	Type/	STS	Water Strikes	PROGR Date Time	Casing		Description	ЛА		Legend	Depth (Thickness)	Level	Inst Bacl
.00 - 0.10	No. 0 D2	0.00	No. PID	<1ppm	> v	22/08/2018	Water	MADE GROUND: B	•	viol				56.97	
.00 - 0.10	0 ES1	0.10	PID	<1ppm		08:00		MADE GROUND: D	ark reddish brown	gravelly fine to coa	rse		0.10 (0.20)		
10 - 0.30 10 - 0.30	0 ES3	- 0.30	PID	<1ppm				SAND. Gravel is an and concrete.	gular and subangul	ar fine to coarse re	d brick	\times	0.30´ · (0.20) · 0.50 ·		ė.
.30 - 0.50 .30 - 0.50		- 0.50	PID	<1ppm				MADE GROUND: S	oft black slightly sa	ndy slightly gravel	y CLAY.	XXX	`0.50´ -	- 56.57	
.50 - 0.70 .50 - 0.70	0 B8	-						Gravel is subangula concrete and limest		ine to coarse red b	orick,	\times	(0.40)		11
.90 - 1.00 .00 - 1.20	0 D9	- 1.00	PID	<1ppm				s	light organic odour			\sim	0.90	· 56.17	
.00 - 1.20	0 ES10	- 1.20		N=29 (3,5/5,7,7,10)				MADE GROUND: S CLAY. Gravel is sub							11
.20 - 1.50	0 B12	-	(-)					concrete, mudstone	, ash and clinker.		/Ii				11
		-						Medium dense oran angular to subround	led fine to coarse fli	int and quartz.	veris		(1.10)	-	2
		_						[RIVER TERRACE	DEPOSITS]						
.90 - 2.00 .00 - 2.4		- 2.00	SPT(C)	N=10 (2,3/2,2,3,3)									2.00 -	- 55.07	4
.00 - 2.50		-						Firm orangish brown angular to subround	n slightly sandy gra led fine to coarse fli	velly CLAY. Gravel	is				ıН
		_						[RIVER TERRACE		in and quarte.	4		(0.50)		ŕН
.50 - 2.60	0 D16	_			\vdash			Medium dense light	areenish arev fine	silty SAND.			2.50 -	- 54.57	iП
		_						[LAMBETH GROUP							ιH
00 04	F D47	-		N=11 (1,2/2,3,3,3)	1 00										ŀН
.00 - 3.4 .00 - 3.5		- 3.00	5P1(5)	N=11 (1,2/2,3,3,3)	1.80								(1.30)		ıН
		F			1										i H
		-											-	-	iД
00 5 5		F			1										iЦ
.80 - 3.90		-	0.000					Firm dark grey sligh			-		3.80	53.27	7/7
.00 - 4.4	5 D20	- 4.00	SPI(S)	N=9 (1,1/2,2,2,3)	3.70			[LAMBETH GROUP	.]		1			-	
		-													
		-									-		(1.20) -	-	
		-									-			-	
		-													//
00 - 5.10 00 - 5.4		-		Ublow=60				Firm to stiff light gre		h brown CLAY.			5.00 -	- 52.07	
00 0.11	0 022	-						[LAMBETH GROUP	']		-				
.50 - 5.60	0 D23	-									-		-	-	
		-									-				(
		_													
		_									-		-	-	//
		_									-				
.50 - 6.9	5 D24	- 6.50	SPT(S)	N=20 (2,3/4,4,6,6)									-	_	//
.50 - 0.5	5 024			14-20 (2,3/4,4,0,0)							-				
		_													
		_											-	-	
		-									-		-		
F0 70	0 005	-											(4.70)		
.50 - 7.60	0 D25	-									-		-	-	
		-									-				$\langle \rangle \rangle$
00 - 8.4	5 U26	F		Ublow=120							F		-	-	
		F									ŀ				//
.45 - 8.50	0 D27	F									F				// r//
	-	F									F		-		//.
		F									ŀ				//
		F			1						F		-	-	(/
		F									F				11
		-	0.5.7.1								ŀ				//.
50 - 9.9	5 D28	- 9.50 -	SPT(S)	N>50 (4,10/25,25 for 15mm)	\vdash						F		-	-	//
		F						Dense to very dense		e to medium SAND			9.70 (0.30)	47.37	<u> </u>
.00 - 10.	10 D29	F			1			[LAMBETH GROUP	<u>'</u>]				(0.30) _	- 47.07	
		- G TECHNIQ		CHISELLI				VATER OBSERVATIO	NS	HOLE/CASING			\٨/٨٣٣	R ADDE	
rom	То	Ту	/pe	Hard Strata From To	Duratio	Date/ II	me S	trike At Time Elapsed Ris	e To Casing Sealed	Hole Dia. Depth C	asing Dia. [Depth			/olume
).00 .20	1.20 15.39		ction Pit ercussion			22/08/2018 22/08/2018 23/08/2018	3 11:40	9.70 20 12	.80 2.40 3.80 2.00 3.90 80 11.50	300 1.20 152 15.00 45 15.30	152	15.00			
						23/08/2018	0 14:00	13.00 20 6	.80 11.50	45 15.39					
				5.00 m bgl, with SP											
oundwa	ater enco	untered at 2	2.50 m bg	I (rose to 1.80 m afte	r 20 min	utes), 9.70	m bgl (ro	ose to 6.80 m bgl afte , 2.00 m - 3.80 m slott							
			er, 9.70 m) mm ID			ter. Backfill: Flush cov						nation D	epth:
	nonacia	100	plus det - 1	cond filter er-	ot ror-	noo 705 - 5	00	ontonito nellet!	top of coord	0000 7000 0 00	nlug data d	oond fill	. I		
st res				sand filter around fir bentonite seal to bas				entonite pellet seal to ontamination noted.	top of second resp	onse zone, 0.30 m	pluviated	sand filte	er	15.39	Эm

Dando 4000

Arcadis Consulting (UK) Ltd

IP

BH105

ient			-		NHS TI	rust				l) Er		1:: Sh	50 1eet 2	of 2
SAMP	LES		TE	STS	_ s	PROGF	RESS		STRA	TA				
Depth	PLES TESTS gr gr gr gr PROCRESS STRATA 17/20 Dept Type Mode Type Mode Description Les (Stratum) Les (Stratum) Description Les (Stratum) Les (Stra	Legend	Depth (Thickness)	Level	Insta Backt									
	NO.	-	INO.				Water					4	-	[]]
) 50 - 10 G	0 030	-						-				(0.50) 10.50	46.57	//
5.50 - 10.0	0 000	-							greenish grey to l	ight brown very clayey f	ne	10.50	40.57	
00 44 4	0 004	-				00/00/0040	40.00	[LAMBETH GROUP]				(0.80)	-	[]]
1.00 - 11.1	0 031	-	5P1(5)	for 70mm)	9.00	17:00	3.30					:	T	//
		-								y to light brown very		11.30	45.77	
													Ī	///
		-										(0.90)	ļ	//
20 - 12 3	0 032	-										12.20	44.87	
20 - 12.0	0 052	-										:	44.07	
		- 12.50 -	SPT(S)		12.10					om12.20 m to 13.00 m bo		. (0.80)	+	
		-											I	
.00 - 13.1	0 D33	-								e to medium SAND.		- 13.00 -	- 44.07	
												:	Į	
.50 - 13.7	0 B34	-										(0.90)	ţ	
3.90 - 14 0	0 D35											13.90	43.17	
.00 - 14.4		— 14.00 -	SPT(S)		13.00			SAND.		y clayey fine to medium				
		-						[LAMBETH GROUP]					ļ	///
		-											ł	//
		-										: (1.49)	-	
.00 - 15.3	9 D37	- 15.00	SPT(S)	N>50 (2,8/10,15,20,5	14.00							:	ŧ	///
		-										-	ļ	//
		-				23/08/2018 15:00						- 15.39	41.68	
		-											I	
		-											-	
		_											I	
		-											+	
		-											İ	
		-											1	
		-											-	
		_											Į	
		-											ţ	
		-											l	
		-											-	
		-											İ	
		-											ļ	
		-											İ.	
		-											T	
		-											ļ	
		Ē											Ī	
		-											ţ	
		-											Ī	
D	RILLING	I TECHNIG	UE	CHISELL	NG		I V	L VATER OBSERVATION	NS			WATE	RADD	ED
-rom 0.00					Duratio	22/08/201	3 09:20	2.50 20 1.8	•	300 1.20 152	Dia. Depth 15.00	From	To Y	/olume
						22/08/201	8 11:40	9.70 20 12.	00 3.90	152 15.00				
marks														
rehole te								ose to 6.80 m bol after	20 minutes) and 1	13.00 m bal (rose to 12))0 m hal after	20		
nutes). I	nstallatio	ns: Shallo	w = 0.00 r	n - 2.00 m plain 50 r	nm ID st	andpipe pie	zometer	, 2.00 m - 3.80 m slotte	ed 50 mm ID stand	pipe piezometer. Deep	= 0.00 m - 9.1	70 m	ination D	enth.
first resp	onse zor	ne, 1.80 m	pluviated	sand filter around fi	rst respo	onse zone, s	5.90 m b	entonite pellet seal to t		onse zone, 0.30 m pluv			15.3	
	JUNU TESC	UIDE ZONE	ະ, ວ.ວອ ເກ	bentonite seal to bas		e. INO EVIDE	ICE OI CO	namination noted.						

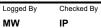
BH106

ient		vital - Mai St. Helier	-	ital Site sity Hosp	itals N	HS TI	ust		10020221 Easting (OS mE) 520356.88	59 No	ound Level (r 9.24 orthing (OS m 59871.47			Ene	/08/2 d Date /08/2	2018 2018		50 neet 1	of 2
SAM	PLES		TE	STS		er es	PROGR	RESS			STR	ATA					Denth		Inst
Depth	Typ No		Type/ No.	Resu	lts	Water Strikes	Date Time	Casing Water			Descriptior	ı			L	egend	Depth (Thickness)	Level	Bac
15 0 1		-	110.				21/08/2018		MADE GROU	ND: Bitumen	bound mat	erial.			8	10 8	(0.15) 0.15	59.09	4
.15 - 0.2	50 D2	0.25	PID	<1ppm			08:00		MADE GROU SAND. Grave						Ä	\bigotimes	0.25	58.99	Å.
.25 - 0.5 .50 - 0.7	70 B5	-							\concrete and	ilint.					<u> </u>	\times	(0.25) 0.50	58.74	
.50 - 0.7 .60 - 0.7		- 0.60	PID	<1ppm					MADE GROU SAND. Grave						. 18	\otimes	(0.50)	ŧ	
00 40		-							wood and con MADE GROU	crete.	v slightly sa	ndv arav		V Grave		\times		50.04	
.00 - 1.2 .10 - 1.2	20 ES8	- 1.10	PID	<1ppm	0.40)				is angular to s						" / Ŕ	\otimes	1.00 -	- 58.24	
.20 - 1.6	50 B9	- 1.20 -	SPT(C)	N=29 (3,4/5,6	,8,10)				\clinker. MADE GROU	ND: Dark ora	angish brow	n aravell	v fine to	coarse	$\neg \triangleright$	\sim	(0.70)	ł	
		_							SAND. Gravel and flint.						:	\otimes		ł	1
.70 - 1.8	30 D10	-							Dense dark br	own very cla	yey sandy	GRAVEL	Grave	is angul	ar 🗋	$\propto \sim$	1.70	57.54	
2.00 - 2.1	0 ES1	2 - 2.00	SPT(C)	N=47					to subrounded						ية : المراجع	o		1	
2.00 - 2.5		- 2.00	PID	(10,13/13,8,1 <1ppm	2,14)					ACE DEFU	5113]				ية. مولية مولية	• •	(1.00)	ł	
		-		- ippin											ن بر ا میا		()	ţ	$\langle \rangle$
		-																ţ	
.70 - 2.8	30 D13	-							Loose to medi							。 	2.70 (0.30)	56.54	
.00 - 3.4	10 B14	- 3.00	SPT(C)	N=10 (1,2/2,2	,2,4)				GRAVEL. Gra	ACE DEPOS	SITS]		to coar	se flint.	_	* <u>*</u> **********************************	3.00 -	56.24	
		F							Firm reddish b	rown to light	grey silty C	LAY.						Ŧ	
3.40 - 3.5	50 D15	-							LONDON OF						-			Ŧ	
		_																Ŧ	/
		_																ł	1
.00 - 4.4	15 D16	-															-	ŧ	
		-															(2.50)	ţ	
		-																ļ	
		-																ţ	$\langle \rangle$
		-																ţ	
.00 - 5.1 .00 - 5.4	10 D17 15 U18	-		Ublow=50														Ŧ	1
		-																Ŧ	1
.50 - 5.6	50 D19	E							Firm grey san	dv siltv CLA							5.50	53.74	\square
		_							[LONDON CL									ł	
		-													E		(1.00) -	1	
		-															()	ļ	
		-																ţ	
6.50 - 6.6	50 D20	- 6.50 -	SPT(S)	N=14 (2,2/3,3	,4,4)				Firm to stiff da			/ black si	Ity CLA	ί.			6.50	- 52.74	2
		-							[LONDON CL	AY FURMAI	IONJ							ŧ	1
		-																ŧ	
		E																ł	
7.50 - 7.6	50 D21	_																ł	
.00 - 1.0		-																ł	$\langle \rangle$
		-													E			ļ	
3.00 - 8.5	50 B22	-															-	ŧ	/
		-													-		(4.50)	ţ	1
8.50 - 8.9	95 U23	-		Ublow=100														ŧ	
		-																Ŧ	
9.00 - 9.1	10 D24	E																Ī	1
.00 - 0.1	0 024	-																ł	
		-													F			ţ	1
		F													E			ţ	$\langle A \rangle$
		F													F			ŧ	1
.00 - 10	.45 D25	- 10.00	SPT(S)	N=27 (2,4/6,6	,7,8)										_E			Ŧ	E-
		G TECHNIC			HISELLIN	I IG	l 	L	VATER OBSER	/ATIONS		но	E/CAS	ING DIA	METE	R	WATE	RADD	
rom	То	Т	уре	Hard : From	Strata To	Duratio	n Date/Ti		Strike At Time Elapse		Casing Sealer	d Hole Dia	Depth	Casing D	ia. De	pth			Volume
0.00 1.20	1.20 15.34		ction Pit Percussion									300 152 140	1.20 3.50	152	3.	50			
												140 45	15.00 15.34						
				15.00 m bgl,	with SPT	run to	15.34 m bgl	I.											
groun tallatio	dwater o ns: 0.00	encountered m - 10.00 r	n plain 50	mm ID stand	lpipe piez	zomete	r, 10.00 m -	15.00 m	slotted 50 mm										
kfill F	lush co		50 m conc	rete, 9.50 m	bentonite	pellet	seal to top o	of respor	nse zone, 5.00 r	n pluviated s	and filter ar	ound res	ponse z	one, 0.3	4 m bg	l bento	nite Term	nination D	Depth:
et sea	l to bas	e of hole. ontaminatior																15.3	1-

MW

BH106

nt	-		-	ital Site sity Hospitals N	IHS TI	ust		10020221 Easting (OS mE) 520356.88	59.24 Northing (OS m 159871.47	N)	21/08/2018 End Date 21/08/2018		50 leet 2	of 2
SAMPL	ES		TE	STS	er es	PROGR	ESS		STR	ATA				
Depth	Type/ No.	Depth	Type/ No.	Results	Water Strikes	Date Time	Casing Water		Descriptior	I	Legend	Depth (Thickness)	Level	Inst Bac
	140.	-	110.				Water	Firm to stiff dark gre		v black silty CLAY.		-	-	3
		-						[LONDON CLAY FO	RMATIONJ			-	-	F
		-										-	Ī	J.F
		-										-	ļ [
00 - 11.10	D26	-						Stiff reddish brown t		onally purple CLAY.		11.00 ·	48.24	
		-						[LONDON CLAY FO	RMATIONJ			-	ŧ [
50 - 11.90	U27	-		Ublow=100								-	ŧ i	
		-										-		
0 - 12.00	D28	-											+	
		-										-	+	
		-										(2.00)	İ.	F
		-										. (3.00)	-	
		-										-	+	
0 - 13.45	D29	— 13.00 -	SPT(S)	N>50 (4,6/10,11,15,14 for 50mm)								- ·	+	
		-									<u> </u>	-	Į	
		-									<u> </u>	-	+	
		-										-	+	
0 - 14.10	D30	-						Stiff reddish brown t	o areenish arev sl	ahtly sandy CLAY.		14.00	45.24	
		-						[LONDON CLAY FO	RMATION]	g,,			Į į	
50 - 14.87	U31	-		Ublow=120									-	F
		-										(1.34)	+	
30 - 14.90		- - - 15.00	ent/e)	N> 50 /7 10/15 10 10								-	‡ [
0 - 15.34	033	- 15.00	5P1(5)	N>50 (7,12/15,19,16 for 35mm)										7
		-				21/08/2018	3.50					15.34	43.90	11
		-				16:00							+	1
		-											+	
		-											ŧ.	ı.
		-											-	ı.
		-											+	1
		-											ŧ	1
		-												1
		-											+	1
		-											+	
		-											Ī	1
		-											I	1
		-											+	1
		-											+	1
		-											ŧ	1
													I	1
		-											+	I
		-											†	i i
		-											I	i i
		-											ţ	r
		-											†	i i
		-											F	r
DR	I ILLING	TECHNIQ	UE	CHISELLI	NG		v	 VATER OBSERVATIO	NS	HOLE/CASING	DIAMETER	WATE	R ADDE	<u>ED</u>
om	To .20	Ту	ре	Hard Strata From To	Duratio	n Date/Ti			e To Casing Sealed		sing Dia. Depth 152 3.50			/olum
	.20 5.34	Cable Pe	tion Pit ercussion							152 3.50 140 15.00	32 3.50			
arks										45 15.34				
hole ter			depth of 1	15.00 m bgl, with SP	T run to	15.34 m bgl	l.							
allations:	: 0.00 m							slotted 50 mm ID sta						
								nse zone, 5.00 m pluv			0.34 m bal bent	nite Term	ination De	epth
	o base o				c polici		i i copoi	100 20110, 0.00 11 plat			, 0.01 m 29. 20m		15.34	



BH107

Elient	nd St.	Helier	Univer	sity Hosp	itals N	HS Tr	ust		Easting (OS 520372.				g (OS m 74.03				End [20/	Date 08/2018	s	heet '	of 2
SAMPLE	ES		TE	STS		es	PROGF	RESS					STR	ATA					Danth		Inst
Depth	Type/ No.	Depth	Type/ No.	Resu	lts	Water Strikes	Date Time	Casing Water				Des	scriptio	n				Legend	Depth (Thickness	_{s)} Leve	Bacl
		-					20/08/2018 08:00		MADE GI MADE GI						el is an	gular a	and	****	(0.15) 0.15 (0.25)	59.0	4
	B1	- 0.50	PID	<1ppm					subangul MADE G	ROUND	: Dark r	reddisł	n browr	gravel	ly medi	um to	coarse		0.40	58.8	
0.50 - 1.00	ES2	-							SAND wi fine to co red brick.	arse rec									× (0.80)		
1.00 - 1.20	ES3	- 1.00	PID	<1ppm															×	÷	
1.20 - 1.70	B4	- 1.20	SPT(C)	N=12 (1,2/3,3	,3,3)				MADE G	ROUND	: Firm b	orown	slightly	sandy	gravelly	CLA	<i>ſ</i> .		1.20	58.0	4
1.50 - 1.60	ES5	- - 1.50 -	PID	<1ppm					Gravel is	angular	to subr	rounde	d fine t	o coars	e flint a	nd re	d brick.		× × (0.80)	+	
		-																	×	Į	
2.00 - 2.50	D6 B7 ES8	- 2.00 2.10	SPT(C) PID	N=18 (4,4/6,4 <1ppm	,3,5)				Loose to sandy GF										2.00	+ 57.2	≰ [∠4 : :
2.10 - 2.20	E90	-							flint. [RIVER T					Jubrour		0 10 0	ouroo			-	
													,						(1.30)	Ī	
		-																		ţ	
	D9 B10	— 3.00 -	SPT(C)	N=9 (2,1/1,2,3	3,3)															+	
									Firm redo	lish brov	wn CLA	Y.							3.30	55.9	۱ L
		-							[LAMBET	TH GRO	UP]								-	ţ	
		-																	- - - (1.20)	ţ	
	D11 U12	_		Ublow=40															- (1.20)	Ŧ	
	0.2	-																	-	ļ	
4.50 - 4.60	D13	-							Soft to fir	m liaht c	areenish	n arev	sliahtlv	sandv	siltv CL	AY.			4.50	- 54.7	ŧÈÈ
		-							[LAMBET			. 3)	3,	,					-	Į	
5.00 - 5.10	D14	- 5.00	SPT(S)	N=11 (1,2/2,2	,3,4)														(0.80)	+	
																			5.30	53.9	
		-							Firm dark			silty CL	.AY.					E	- 0.50	- 55.5	Ľ
		-							-		-							E	(0.70)	ţ	E
6.00 - 6.10	D15	-																	6.00	- 53.2	
0.00 0.10	2.0	-							Firm purp [LAMBET			CLAY.						<u> </u>		00.2	
6 50 6 05	1116	-		Ublow=50														<u> </u>	-	ŧ	())
6.50 - 6.95	U16			UDIOW-50														<u> </u>	-	Ŧ	1/
		-																E	-	ļ	
7.00 - 7.10	D17	-																	(2.00)	+	
																		F	-	Į	
		-																F	-	ţ	
																		F	-	ŧ	
8.00 - 8.10	D18	- 8.00	SPT(S)	N=18 (2,3/3,4	,5,6)				Stiff purp			LAY.							8.00	- 51.2	4
		-							[LAMBET	TH GRO	UP]							F	-	ţ	
		-																F	-	Ŧ	
		-																F	-	ļ	
9.00 - 9.10	D19	_																E	(3.40)	ŧ	
		-																E		ł	1
9.50 - 9.95	U20	-		Ublow=50														E	-	+	
		E																E	-	Į	1/
0.00 - 10.10	D21	-																	-	+	//
DRI		TECHNIQ			HISELLI			v	VATER OB	SERVAT	TIONS			Н	OLE/CA			ETER	WAT	ER ADI	
From	То	Ту	/pe	Hard : From		Duratio	n Date/T		Strike At Time		Rise To	Casing	g Seale	d Hole D)ia. Dep	oth Ca	sing Dia.	Depth	From	То	Volume
	.20 5.38		tion Pit ercussion											300 152 140 45	4.0 15.	0	152	4.00			
emarks				I		1				1		1		1 +3	10.						
				15.00 m bgl, epage at 3.20		run to	15.38 m bg	I.													
tallations:	0.00 m	- 2.00 m	plain 50 m	nm ID standp	pipe piezo																
ckfill: Eluci	h cover	set in n h	0 m conce	rete 1 60 m	hentonit	nellet ·	seal to top	of reence	150 7000 A	00 m n	huviatad	hand a	filtor ~	nund re	snoner	7000	7 0 3 5	m hai hant	onite 'To-	mination	Denth.

Contractor

мw

|--|

nt	-		-	ital Site sity Hospitals N	HS Tr	ust		10020221 Easting (OS mE) 520372.86	59.24 Northing (OS mN 159874.03)	End Dat	2018 2018		:50 heet 2	of 2
SAMPL				STS		PROGR	FSS		STRA						1
Depth	Type/	Depth	Type/	Results	Water Strikes	Date Time	Casing					Legend	Depth (Thickness) Level	Inst Bacl
Depth	No.	Depth	No.	Results	> v	Date Time	Water	Otiff assessible analysik	Description			Legend			
		-						Stiff purplish grey sill [LAMBETH GROUP]						ţ	
		-												Ì	11
		-												ł	11.
		-												ţ	1.1
00 - 11.10	D22	- — 11.00	SPT(S)	N=19 (2,3/4,4,5,6)										1	11
		_		())))										ţ	1/
		_											11.40	47.84	11
		_						Stiff purplish brown t [LAMBETH GROUP]					11.40	+ 1.04	
		-											-	Ŧ	11
		-												ţ	1
00 - 12.10	D23	-											(4.50)	+	1
		_										:	(1.50)	İ	1
		-											-	ł	11
50 - 12.95	024	-		Ublow=100										Ŧ	1
		-												ţ	11
00 - 13.10	D25	-						Stiff to very stiff gree		andy CLAY.			12.90	46.34	1
		-						[LAMBETH GROUP]					-	ţ	11
		L												ł	1
		_												Ŧ	1
		-												ţ	1
		-											-	ţ	1
0 - 14.10	D26	- 14.00	SPT(S)	N>50 (4,7/11,13,14,12 for 50mm)										÷	1
		-		lor sommy									(2.48)	ł	1
		-												Ŧ	
		-											-	ţ	11
		-												ţ	
0 - 15.38	27	- — 15.00		N>50 (7,11/13,14,18,5										1	11
0 - 10.00	021	-		for 10mm)										-	
		-				00/00/0040	4.00					<u> </u>	45.00	1 40.00	
		-				20/08/2018 16:00	4.00						15.38	43.86	
		-												ţ	
														ł	
		_												Ŧ	
		-												ţ	
		-												ţ	
		_												t	
		-												-	
		-												Į	
		-												†	
		-												ţ	
		-												ł	
		-												Ŧ	
		-												ţ	
		-												1	
		L												ţ	
		-												ł	
		_												ŧ	
		-												ţ	
		F												ţ	
		F												+	
		-												ł	
		F												Į	
		F												ţ	
		F												ţ	
		-												Ţ	
		-												ł	
_						L ₁			10	100 5/01 5	0.0				
DF om	To RILLING	TECHNIQ	UE /pe	CHISELLIN Hard Strata	Duratio	n		VATER OBSERVATIO		HOLE/CASIN Hole Dia. Depth C		ER Depth	From	ER ADD	ED Volum
00	1.20	Inspec	tion Pit	From To	Juraud	n Date/Ti	me	Rist		300 1.20	152	4.00			, Juli
	5.38		ercussion							152 4.00 140 15.00					
										45 15.38					
arks	rminet-	l at tar'	donth -f	15.00 m bal with OPT	P1 100 4-	15 20	1								
roundv	ater end	countered,	slight see	15.00 m bgl, with SPT epage at 3.20 m bgl.		-									
		- 2.00 m	plain 50 m	nm ID standpipe piezo	ometer,	2.00 m - 6.	00 m slo	tted 50 mm ID standpi	pe piezometer.		0.05		. —		
llations							or roopol	nsezone 400 m nluvi	ore retit bres have	und rooponoo 7on	10 U 38 m	nai henta	Inite Terr	mination E	Innth
fill: Flu	sh cover o base c	set in 0.5 fhole.	U m conci	rete, 1.50 m bentonite	e pellet s	sear to top t	liespoi	100 20110, 4.00 11 plavi		unu response zon	ie, 5.50 m	bgi berne		15.3	

MW

WS106

psom a	nd St.		Hospi Jnivers	ity Hospitals N	IHS Trus	Easting (OS mE) Northing (OS mN) End Date	50 neet 1 of 1
SAMPL	LES		TI	ESTS	er es	STRATA	Inst
Depth	Type/ No.	Depth	Type/ No.	Results	Water Strikes	Description Legend (Thickness	
						MADE GROUND: Grass over brown slightly sandy gravelly CLAY with abundant 0.10 vootlets. Gravel is angular fine to coarse flint (TOP SOIL).	61.00
.30 - 0.50 .30 - 0.50	B2 ES1	0.30	PID	<1ppm		MADE GROUND: Brown slightly silty sandy GRAVEL with low cobble content. Gravel is angular and subangular fine to coarse flint, brick and concrete. Cobbles	
	D 2	0.70	DID	-1.000		are angular brick and concrete. (0.90)	
0.70 - 0.90 0.70 - 0.90	B3 ES4	0.70	PID	<1ppm		Becoming very sandy from 0.60 m to 1.00 m bgl.	
						Firm greyish brown slightly sandy CLAY	+ 60.10
1.20 - 1.65 1.20 - 2.00	D10 16	1.20	SPT(S)	N=12 (1,2/2,3,4,3)	Dry		
1.50 - 1.60	ES5	1.50	PID	<1ppm			
2.00 - 2.45 2.00 - 3.00	D11	2.00	SPT(S)	N=9 (1,2/2,2,2,3)	Dry		
						(3.00)	
8.00 - 3.45	D12	3.00	SPT(S)	N=18 (2,3/4,4,5,5)	Dry	Becoming stiff from 3.00 m bgl.	+ 1:4
8.00 - 4.00	18					Becoming stiff from 3.00 m bgl.	
.00 - 4.45	D13	4.00	SPT(S)	N=17 (3,2/4,4,4,5)	Dry		57.10
.00 - 5.00	19					Stiff dark grey slightly sandy very slity CLAY with frequent laminations of fine to	
						[LONDON CLAY FORMATION]	
00 F 4F	DIA	5.00	0.007(0)		Davi	Stiff dark brownish grey slightly sandy CLAY. [LONDON CLAY FORMATION]	56.30
5.00 - 5.45	D14	5.00	5P1(5)	N=28 (5,5/5,7,8,8)	Dry		T Z
						(0.65)	55.65
From 0.00 1	RILLING T To 1.20 5.45	ECHNIQU Techn Inspecti Window S	ique on Pit	Date/Time	WATEF Strike At	OBSERVATIONS HOLE/CASING DIAMETER BACK Time Elapsed Rise To Casing Sealed Hole Dia. Depth Casing Dia. Depth Top Base 300 1.20 0.00 0.25 0.50 0.50 5.00 67 5.00 5.00 5.00 5.00 5.00	FILL Backfill Concrete Bentonite Gravel Bentonite

SS

Yellow Dart

ient	-	tal - Mai t. Helier	-	ital Site sity Hospitals NH	IS Trus	st	Eastin	20221 ig (OS mE 323.84	E)	60.04	(OS mN)		Start Da 15/08 End Date 15/08	/ 2018 •	Scale 1:5 She	0 eet 1 (of 1
	PLES			ESTS						STRAT				-			
Depth	Тур		Type/	Results	Water Strikes				C	escription				Legend	Depth (Thickness)	Level	Ins Bac
.30 - 0.5 .30 - 0.5	50 B2	2 0.30	No. PID	<1ppm		nootlets. (MADE GI	Gravel is an ROUND: Br	igular fir rown slig	er brown s ne to coar ghtly silty	slightly sand se flint (TO sandy GRA	P SOIL). VEL with	CLAY with abu	ent.		(0.20) 0.20	59.84	4 X
).70 - 0.9).70 - 0.9).70 - 0.9	90 B4	0.70	PID	<1ppm			angular an ar brick and				Rebar	and concrete. C fragments at 0.3 y sandy from 0.6	35 m bgl.		(0.80)		
.20 - 1.3 .20 - 1.6 .20 - 2.0	5 D	1.20	SPT(S) PID	N=6 (2,1/1,2,2,1) 1ppm	Dry	fine to co	m greyish b arse flint ar N CLAY FO	nd chalk.				LAY. Gravel is a			1.00 -	- 59.04	
2.00 - 2.4 2.00 - 3.0			SPT(S)	N=14 (2,2/3,3,4,4)	Dry										(2.00) -		
8.00 - 3.4 8.00 - 4.0			SPT(S)	N=19 (3,4/4,4,5,6)	Dry	coarse fli	nt and chall	k.		ntly gravelly	CLAY. Gr	avel is angular f	fine to		3.00 -	- 57.04	
.00 - 4.3	38 D1	2 4.00	SPT(S)	N>50 (6,7/16,16,17,1 for	Dry	[LONDO]	N CLAY FO	RMATIC	DN]						(1.38)		
				10mm)											4.38	55.66	//
															-		
rom	To 1.20	Inspe	nnique ction Pit	Date/Time	WATEF Strike At	R OBSERVA Time Elapsed	TIONS Rise To	Casing	Sealed	Hole Dla. 300	Depth 1.20	NG DIAMETER Casing Dia.	Depth	Тор 0.00	BACKFI Base 0.25	Back Conc	rete
From 0.00 1.20 Remarks Borehole t No ground nstallation	To 1.20 4.38 terminate dwater e n: 0.00 n lush cov	Tecl Inspe Windov ed at 4.38 r ncountered n - 0.50 m p er set in 0.2	nnique ction Pit v Sample n bgl due t lain 50 mr	o SPT refusal. n ID standpipe piezom rete, 0.25 m bentonite p	Strike At	Time Elapsed	Rise To	mm ID	standpipo	Hole Dla. 300 87 77 67 e piezomete	Depth 1.20 2.00 3.00 4.00 er.	Casing Dia.	Depth	0.00 0.25 0.50 4.00	Base 0.25 0.50 4.00 4.38	Ba Co Ber G Ber	nci nto rav nto

Arcadis Consulting (UK) Ltd

Contractor

Start Date Scale 1:50 Project No Ground Level (mAOD) Project Epsom Hospital - Main Hospital Site 10020221 57.74 16/08/2018 Northing (OS mN) (OS mE Epsom and St. Helier University Hospitals NHS Trust 520539.87 159843.90 16/08/2018 Sheet 1 of 1 TESTS SAMPLES STRATA Water Strikes Install/ Depth Thickness Level Type/ No. Type/ No. Backfill Depth Depth Results Description Leaend MADE GROUND: Grass over brown slightly sandy gravelly CLAY with abundant rootlets. Gravel is angular from fine to coarse gravelly fiint (TOP SOIL). MADE GROUND: Brown slightly slity sandy GRAVEL with low cobble content. (0.20) 0.20 (0.20) 0.40 0.20 - 0.40 ES1 0.20 PID 57.54 <1ppm 57.34 Gravel is angular and subangular fine to coarse flint, brick and concrete. Cobbles 0.50 - 0.70 B2 are angular brick and concrete. Rebar fragments at 0.35 m bgl. Very dense grey sandy angular fine to coarse GRAVEL of flint and chalk. [RIVER TERRACE DEPOSITS] 0.70 - 0.90 ES3 0.70 PID <1ppm (1.10)N>50 (13,16/16,16,2 for 10mm) 1.20 SPT(S) Dry 1.50 56.24 DRILLING TECHNIQUE WATER OBSERVATIONS HOLE/CASING DIAMETER BACKFIL From То Technique Date/Time Strike At Time Elapsed Rise To Casing Sealed Hole Dla Casing Dia. Depth Backfill Depth Тор Base 0.25 0.50 1.20 1.50 0.00 0.25 0.50 1.20 1.20 1.50 0.00 1.20 Inspection Pit 300 45 Concrete Bentonite Gravel Bentonite 1.20 1.50 Window Sample Remarks

Borehole terminated at 1.50 m bgl due to SPT refusal. No groundwater encountered.

Installation: 0.00 m - 0.50 m plain 50 mm ID standpipe piezometer, 0.50 m - 1.20 m slotted 50 mm ID standpipe piezometer.

Backfill: Flush cover set in 0.25 m concrete, 0.25 m bentonite pellet seal to top of response zone, 0.70 m pluviated sand filter around response zone, 0.30 m bgl bentonite Termination Depth: pellet seal to base of hole. No evidence of contamination noted 1.50m

Contractor

SS

WS108

nt		al - Main Helier I		tal Site ity Hospitals N⊦	IS True	et	Project N 10020 Easting (52046	221 OS mE)	5 N	round Level (r 6.54 orthing (OS m 59993.24	N)	Start Dat 17/08 End Date 17/08	/2018	^{Scale} 1:50 Sheet 1 c			
		Heller			1	5L	52040	0.13				17/08	2018	5116	et 1		
SAMPI	Type/		Type/	ESTS	Water Strikes					STRATA			l	Depth (Thickness)	Level	Inst Bac	
Depth	No.	Depth	No.	Results	> \u00f6	MADE GRO		, hitumon	Descri				Legend		56.44		
~~ ~ ~~						MADE GRO	UND: Blac	k bitumen	bound ma	aterial.				0.10 0.20	56.34	R	
30 - 0.50 30 - 0.50	B2 ES1	0.30	PID	<1ppm		MADE GRO red brick, co			ery gravelly	y CLAY. Gra	vel is angular fir	e to coarse		(0.30)	- 56.04		
70 0 00		0.70	DID	-4		MADE GRO	UND: Dark	grey brow			tly gravelly CLA	Y. Gravel is		0.50	1	=	
		0.70	PID	<1ppm		angular tine	to coarse o	cnaik, qua	irtz and ree	D DICK.				(0.50)	I	≡I ⊪=	
10 1 20	ESE	1 10	DID	<100m		Medium den	ise light bro	wnish are	ev verv sa	ndv GRAVE	L. Gravel is and	ular fine to		1.00 -	- 55.54		
20 - 2.00	16	1.20	SPT(S)	N=21 (8,4/5,5,6,5)	Dry	coarse flint.	•	•	, ,	,	5						
								PUSITSJ						(1.00)	L		
														(1.00)	I	111 =	
00 - 3.00	B7	2.00	SPT(S)	N=22 (7,6/9,4,4,5)	2.00	Medium den	ise to dens	e orangist	h brown sl	iahtly silty s	ightly gravelly S	AND Gravel		2.00 -	- - 54.54		
						is angular fir	ne to coars	e flint.	in brown of	ightiy only of	ignuy graveny e		×××		I		
						[RIVER TER	RRACE DE	POSITS]					××××				
1.10 - 1.20 ES5 1.10 PID 1.20 - 2.00 SPT(S) SPT(S) SPT(S) Medium dense light brownish grey very sandy GRAVEL. Gravel is angular fine to coarse flint. [RIVER TERRACE DEPOSITS] 2.00 - 3.00 B7 2.00 SPT(S) N=22 (7,6/9,4,4,5) Medium dense to dense orangish brown slightly silty slightly gravelly SAND. Gravel is angular fine to coarse flint. [RIVER TERRACE DEPOSITS]			××××	(1.00)													
				××××	(1.38)	I											
	$\times \times \times$	-	-														
	\hat{x}_{\times}																
													ו	3.38	53.16		
														-			
														-	-		
														-	L		
															I		
														-	-		
														-	-		
														-	-		
															I		
														-	-		
														-	-		
														-	-		
														_	_		
														-	ŀ		
															ŀ		
															ŀ		
														-	F		
															Ì		
														-	-		
														-	-	1	
	_				-									-	-		
DR	RILLING	L TECHNIQU	JE	l	WATER	OBSERVATIO	ONS			HOLE/C	ASING DIAME	TER		BACKFI	LL	1	
	To	Techr		Date/Time				ising Sea		Dla. Dep		Depth	Top	Base	Bac		
	1.20	Inspect Window		17/08/2018 12:00	2.00	20	1.50		3	00 1.2 37 2.0	ŏ		0.00 0.25	0.25 3.38	Tarm Arisi		
0 3	3.38	WINGOW	Jampie			1	1			7 3.0						-9-	

Remarks

Remarks Borehole terminated at 3.38 m bgl due to SPT refusal. Groundwater encountered at 2.00 m bgl, rose to 1.50 m bgl after 20 minutes. Borehole collapsed back up to 1.00m bgl, no installation. Backfill: 0.25 m bitumen bound material, 3.13 m arisings to base of hole.

No evidence of contamination noted.

Arcadis Consulting (UK) Ltd

Contractor

Checked By Logged By IP SS

Termination Depth:

3.38m

WS109

WS110

SAMPL Depth .20 - 0.30 .30 - 0.50				ity Hospitals NH					15998			17/08				of 1
				ESTS	er SS				STRA	TA						
.20 - 0.30 .30 - 0.50		Depth	Type/ No.	Results	Water Strikes			D	escription				Legend	Depth (Thickness)	Level	Inst Bac
	ES1 B2	0.20	PID	<1ppm		MADE GROUN MADE GROUN brown slightly si concrete.	D: Brown sli	ghtly silty	sandy GRA				*****	0.10	56.36	A.Y.
.70 - 0.80	ES3	0.70	PID	<1ppm										(0.90)		
.10 - 1.20	ES4	1.10 1.20	PID SPT(S)	<1ppm N>50 (10,11/14,16,20,0 for 0mm)	Dry	Medium dense fine to coarse fli [RIVER TERRA	nt.		h grey very	/ sandy GR	AVEL. Gravel	is angular		1.00 - (0.58)	55.46	
rom	То	ECHNIQU Techn	ique			OBSERVATIONS Time Elapsed Rise	1	Sealed	Hole Dla.	Depth	NG DIAMETE Casing Dia.	R Depth	Тор	BACKFI Base	Back	
.20 1 narks rehole terri groundwa tallation: (/ater enco 0.00 m -	ountered. 0.50 m pla	Sample bgl due to iin 50 mm	o SPT refusal. ID standpipe piezome ete, 0.25 m bentonite p									0.00 0.25 0.50 1.20	0.25 0.50 1.20 1.58	Concr Bento Grav Bento	nite /el nite

WS1	11	

som Ho som an	-		-	tal Site ity Hospitals N	NHS Tru	st	Eastir	20221 ng (OS mi 334.60	E)	59.46 Northing 15992	(OS mN) 2.15		End Dat	8/2018 9/2018	1:5 She	0 eet 1 o	of 1
SAMPLE	S		TI	ESTS	-se					STRAT	A						
Depth	Type/ No.	Depth	Type/ No.	Results	Water Strikes				C	Description				Legend	Depth (Thickness)	Level	Ins Bao
										base and m	nembrane.			XXX	0.10	59.36	4
.20 - 0.30	ES1	0.20	PID	<1ppm						ayey SILT.	olightly oor	ndy slightly gr	ovelly		(0.20) 0.30	59.16	
.40 - 0.60	B2									e brick and		idy slightly gi	aveny			ŧ	
.70 - 0.80	ES3	0.70	PID	<1ppm												ŧ	
															(1.20)	L	
.20 - 2.00	15	1.20	SPT(S)	N=9 (2,2/3,2,2,2)	Dry											ł	
			(-)		2.9											ł	
.60 - 1.70	ES4	1.60	PID	<1ppm						y sandy CL	AY.				1.50	57.96	
						LONDOR	I CLAY FO	RMATIC	ואט						-	ŧ	
.00 - 3.00	16	2.00	SPT(S)	N=5 (1,1/1,1,1,2)	Dry											ŧ	
															(1.50)	I	1
															-	ļ	
															- - -	ŧ	
														日二		1	1
.00 - 4.00	17	3.00	5PI(S)	N=15 (2,3/4,4,3,4)	Dry	Stiff grey	mottled bro	own sligh	ntly sandy	/ CLAY.					3.00	- 56.46	
							ULAI FU									ł	1
																ţ	//
															(1.40)	ł	
.00 - 5.00	18	4.00	SPT(S)	N=16 (3,2/4,4,4,4)	Dry										-	ŧ	
															-	ł	
							grey slightl			CLAY.					4.40	55.06	1
						[LONDON	I CLAY FO	RMATIC		ens of oran	aish brown	silty sand at	1.45 m bal.		-	ł	
											5] <u> </u>	(1.05)	ŧ	
		5.00	SPT(S)	N=19 (4,4/5,5,4,5)	Dry									×		Ŧ	1
														×		I	
															5.45	54.01	
																ŧ	
																ŧ	
																I	
																ł	
																ŧ	
																ţ	
																Ē	
																ł	
																ŧ	
																ŧ	
															-	ŧ	
																I	
																ļ	
																ł	
																ŧ	
																Ŧ	
																ŧ	
																ţ	
																ţ	
																<u> </u>	
DRIL	LING T	ECHNIQU	JE		WATER	R OBSERVA	TIONS			H	DLE/CASI	NG DIAMETE	R		BACKF		
rom T		Techn	-	Date/Time	Strike At	Time Elapsed	Rise To	Casing	Sealed	Hole Dla.	Depth	Casing Dia.	Depth	Тор	Base 0.25	Back	
	20 45	Inspecti Window \$								300 87 77	1.20 2.00 3.00			0.00 0.25 0.50	0.25 0.50 1.50	Conci Bento Grav	nite
					1					67	5.00			1.50	5.45	Bento	
_{larks} ehole tern	ninated	at target d	epth of 5.	00 m bgl, with SPT	run to 5.4	5 m bgl.											
groundwa	ter enco	ountered.		ID standpipe piezo		-	slotted 50	חו mm)	standnin	e piezometa	er.						
				ete, 0.25 m bentonit								response 70	ne 3 05 m	hal hento	nite Termir	nation De	pth
cfill: Flush et seal to					0 00.00			JIIE, 1.00	ni piuvie	aleu sanu ii		10000100 20	ne, 0.00 m	bgi bonto			• • •

Contractor

ient		-	l - Main Helier L	-	tal Site ity Hospitals NH	IS Trus	st	Easti	20221 ng (OS ml 354.54	E)	59.06 Northing 15993	(OS mN) 9.75		End Dat	/2018 	1:5 She	o eet 1 o	of 1
SAN	IPLES			TI	ESTS	er es					STRAT	A				Depth		Insta
Depth	ר ו	ype/ No.	Depth	Type/ No.	Results	Water Strikes				D	escription				Legend	(Thickness)	Level	Back
							MADE GE	ROUND: G ROUND: B	Frey bitur	men boun men bour	id material. nd material.					0.10	58.96	4
).40 - 0.		B2	0.40	PID	<1ppm		MADE G	ROUND: B	rown slig	ghtly silty	sandy GRA	VEL with	low cobble co			(0.20) 0.30	58.76	7
0.40 - 0.	70	ES1						angular ar ar brick an			to coarse t	Drick, conc	crete and flint.	Copples		(0.70)	ŧ	
0.80 - 0.	90	ES3	0.80	PID	<1ppm											1.00	-	
1.20 - 1.	65	ES4	1.20	SPT(S)	N=3 (1,0/1,0,1,1)	Dry					y clayey sai flint and qu		EL. Gravel is	angular		1.00 -	- 58.06	
			1.20	PID	<1ppm		[RIVER T	ERRACE	DEPOSI	TS]							ł	
																(1.38)	Į	
			2.00	SPT(S)	N>50 (8,14/14,16,20,0	Dry											<u>t</u>	
			2.00	3F1(3)	for 0mm)												Ī	
																2.38	56.68	[
																	Į	
																	ŧ	
																-	+	
																	Į	
																	ŧ	
																	ŧ	
																-	ŧ	
																	Į	
																	ļ	
																	ł	
																	ŧ	
																	Į	
																	ł	
																	ŧ	
																	Į	
																-	÷	
																	ŧ	
																	ŧ	
																	Į	
																-	ł	
																	ł	
																	Į	
																	ļ	
																	ŧ	
																-	ŧ	
																	Į	
																	ł	
																	ł	
																-	ŀ	
																	ŧ	
																	ŧ	
																	ł	
																	Ļ	
								TIONS						D		BACKE		
rom	DRILL To		ECHNIQU Techni		Date/Time		Time Elapsed	Rise To	Casing	Sealed	HO Hole Dla.	DEP/CASI Depth	NG DIAMETE Casing Dia.	CR Depth	Тор	BACKF	LL Back	fill
00 20	1.20 2.38		Inspecti Window S	on Pit							300 87	1.20 2.00	-		0.00 0.25	0.25 1.00	Concr Bento	rete nite
	2.00										45	2.38			1.00 2.00	2.00 2.38	Grav Bento	rel
narks	. ·					I		I					•					
groun	dwate	r enco	untered.	•	o SPT refusal.													
allatio	n: 0.00	0 m - 1	1.00 m pla	in 50 mm	n ID standpipe piezom ete, 0.75 m bentonite	eter, 1.00) m - 2.00 m	n slotted 50) mm ID	standpipe	e piezomete	er.				····	ation De	
kfill -	Flush a	OVer	et in 0.25	m concre	10 (1) / 5 m nentonite i	nellet ser	al to top of "	esponse 7	one 100) m nluvia	ated sand fil	ter around	response zo	ne () 38 m				nth.

Contractor

Project Window Sample Photography Sheet

WS106

Project Epsom Hospital – Main Hospital Site Client

Epsom and St. Helier University Hospitals NHS Trust 520311.41

Job No 10020221 Easting (OS mE) 520311.41 Ground Level (mAOD) 61.10 Northing (OS mN) 159846.20

Start Date 15/08/2018 End Date 15/08/2018

WS106 – 1.20 m – 5.00 m bgl

ardiff F3 0EY

ARCADIS Window Sample Photography Sheet

Project Epsom Hospital – Main Hospital Site Client

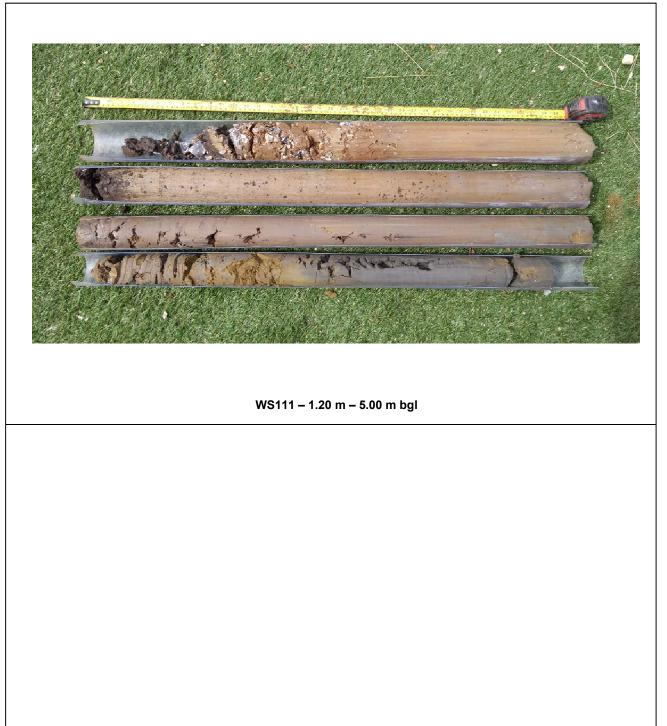
Epsom and St. Helier University Hospitals NHS Trust 520468.13

Job No 10020221 Easting (OS mE) 520468.13 Ground Level (mAOD) 56.54 Northing (OS mN) 159993.24

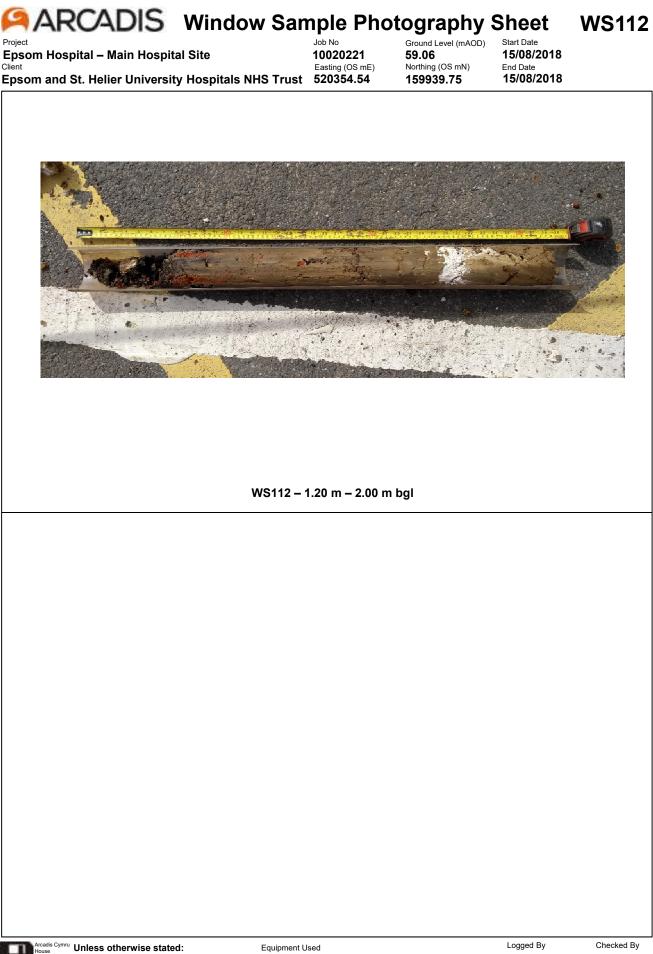
Start Date 17/08/2018 End Date 17/08/2018 **WS109**

WS109 – 1.20 m – 3.00 m bgl

Checked By


Project Window Sample Photography Sheet Job No Ground Level (mAOD) Start Date

Epsom Hospital – Main Hospital Site


Epsom and St. Helier University Hospitals NHS Trust 520334.60

Job No 10020221 Easting (OS mE) 520334.60 Ground Level (mAOD) 59.46 Northing (OS mN) 159922.15

Start Date 15/08/2018 End Date 15/08/2018 **WS111**

Epsom Hospital - Main Hospital Site

APPENDIX D - Certification of Field Apparatus

SPT Hammer Energy Test Report

SEDS8

10/05/2018

15/05/2018

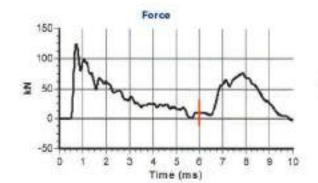
SEDS8.spt

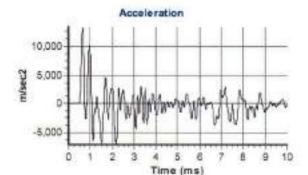
N P BURROWS

in accordance with BSEN ISO 22476-3:2005

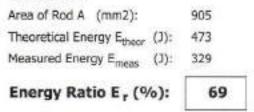
East Grinstead RH19 2HU	File Name: Test Operator:	
Chariwoods Road	Report Date:	1000
Southern Testing Laboratories Unit 11	Test Date:	
Neil Burrows	SPT Hammer Ref:	

Instrumented Rod Data

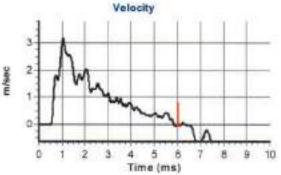

Diameter dr (mm):	54
Wall Thickness tr (mm):	6.0
Assumed Modulus E ₈ (GPa):	200
Accelerometer No.1:	6458
Accelerometer No.2:	9607

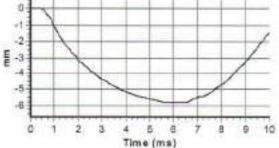

SPT Hammer Information

Hammer Mass	m (kg);	63.5
Falling Height	h (mm):	760
SPT String Len	gth L (m):	14.5


Comments / Location

CHARLWOODS




Calculations

The recommended calibration interval is 12 months

Displacement

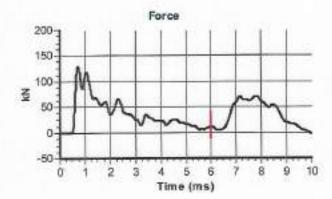
Signed: N P Burrows Title: Field Operations Manager

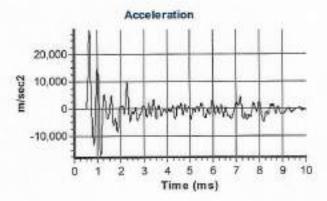
SPT Hammer Energy Test Report

in accordance with BSEN ISO 22476-3:2005

Neil Burrows	
Southern Testing Laboratories	\$
Unit 11	
Charlwoods Road	
East Grinstead	
RH19 2HU	

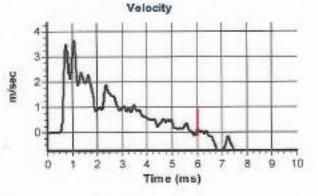
Instrumented Rod Data

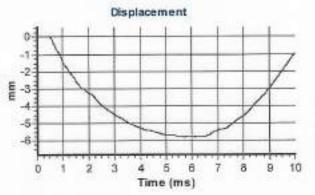

Diameter d _r (mm):	54
Wall Thickness tr (mm):	6.0
Assumed Modulus Ea (GPa):	200
Accelerometer No.1:	6458
Accelerometer No.2:	9607


SPT Hammer Ref:	SEDS11
Test Date:	27/07/2018
Report Date:	27/07/2018
File Name:	SEDS11.spt
Test Operator:	N P BURROWS

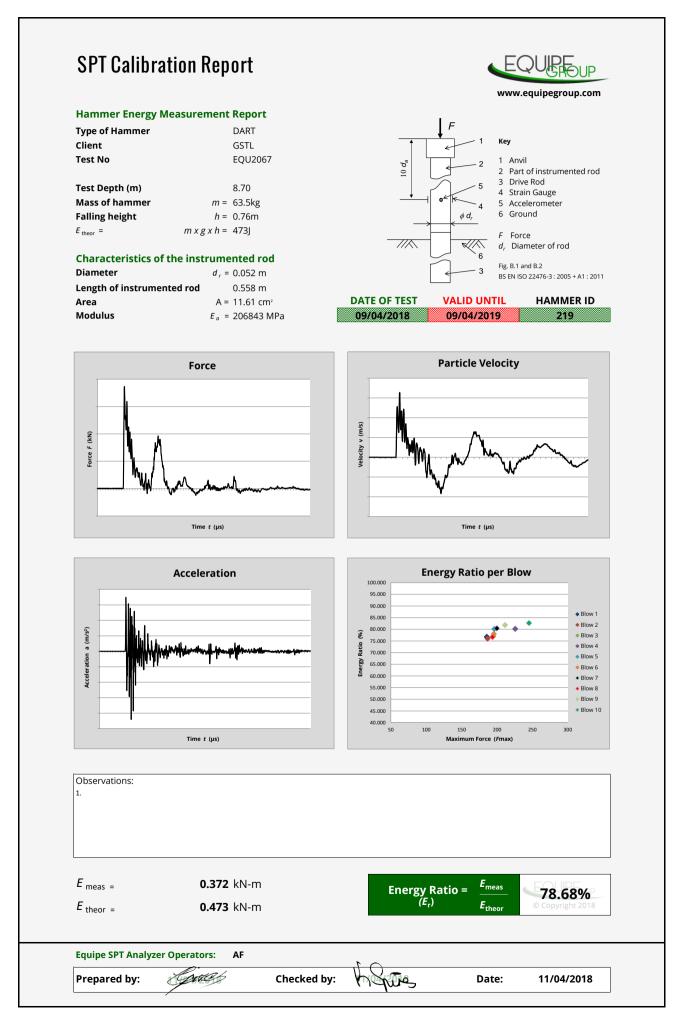
SPT Hammer Information

Hammer Mass	m (kg):	63.5
Falling Height	h (mm):	760
SPT String Len	gth L (m):	14.5


Comments / Location CHARLWOODS



Calculations


Energy Ratio E r (%):	71
Measured Energy E _{meas} (J):	336
Theoretical Energy E _{theor} (J):	473
Area of Rod A (mm2):	905

Signed: N P Burrows Title: Field Operations Manager

with the standard and the states in the second states and the

© Copyright 2018 Equipe Group, The Paddocks, Home Farm Offices, The Upton Estate, Banbury, Oxfordshire, OX15 6HU Tel: +44 (0)1295 670990 Fax: +44 (0)1295 678232 Email: info@equipegroup.com Epsom Hospital - Main Hospital Site

APPENDIX E - Monitoring Data

					Grou	nd and Ground	water Elevatio	ns						
Monitoring Well	Surface Elevation	рН	Temp.	Conductivity	ORP	Dissolved Oxygen	Depth to Thickness of LNAPL LNAPL				Comments	Depth to Groundwater	Depth to Base	Groundwater Elevation
	(m AOD)		(∘C)	(mS/cm)	mV	(mg/l)	(m bgl)	(mm)		(m bgl)	(m bgl)	(mAOD)		
						23-Aug	-18							
BH103	59.23	7.38	17.57	1775	62.4	1.29	-	-	Clear, colourless	1.11	14.03	58.12		
BH105 (S)	57.07			GRAB SAMPLE			-	-	Cloudy, dark brown	1.50	3.00	55.57		
BH105 (D)	57.07			GRAB SAMPLE			-	-	Cloudy, dark brown	1.25	10.00	55.82		
BH106	59.24		NO GROU	NDWATER ENCO	DUNTERED		-	-	-	DRY	14.97	N/A		
BH107	59.24			GRAB SAMPLE			-	-	Cloudy, dark brown	2.25	5.97	57.00		
WS106	61.10			GRAB SAMPLE			-	-	Cloudy, dark brown	1.16	4.92	59.94		
WS107	60.04			GRAB SAMPLE			-	-	Cloudy, dark brown	2.57	3.92	57.47		
WS108	57.74		NO GROU	NDWATER ENCO	DUNTERED		-	-	-	DRY	1.05	N/A		
WS109	56.54		NO	WELL INSTALLA	TION		-	-	-	-	-	N/A		
WS110	56.46		UNABLE TO	LOCATE MONITO	ORING WELL		-	-	-	-	-	N/A		
WS111	56.46		NO GROU	NDWATER ENCO	DUNTERED		-	-	-	DRY	1.40	N/A		
WS112	59.06		NO GROU	NDWATER ENCO	DUNTERED		-	-	-	DRY	2.05	N/A		

Notes:

m bgl Metres below ground level

m AOD Metres Above Ordnance Datum

- No LNAPL encountered

LNAPL Light Non-Aqueous Phase Liquid

	Project:		Epsom Hos	pital - Main Hospital Site	Weather:	Overcast with bright spells
AROADIS	Job Number:	10020221	Date:	31/08/2018	Engineer:	SAS

Monitoring Point Reference	Date/ Time	Atmos. Pressure (mbar)	Temp. (°C)	Well Pressure (Pa)	Flow Rate (I/h)	Time (sec)	CH4 (% v/v)	LEL (%)	CO2 (% v/v)	O2 (% v/v)	H2S (ppm)	CO (ppm)	Hex. (%)	PID cf	VOC (ppm)	Surface Elevation (m AOD)	Depth to Water (m)	Depth to base (m)	Groundwater Elevation	Comments (all readings from GL, note datum height if different)			
AMB	31/08/2018 0900	1010	16	N/A	N/A	N/A	0.0	0.0	0.1	20.4	0.0	0.0	0.0	0.0	N/A	N/A	N/A	N/A	N/A				
				Peak:	Peak:	Initial																	
					0	30																	
	31/08/2018					60														Unable to be recorded due to			
BH103	1100	1021	16			90										59.23	59.23	59.23	59.23 N/A	N/A	N/A	N/A	patient's car being parked over
	1100			Steady:	Steady:	120															installation cover		
					0	150																	
						180																	
				Peak:	Peak:	Initial	0		0.1	20.1													
					0	30	0		0.1	19.1													
	31/08/2018					60	0		0.1	19.1													
BH105 (S)	1110	1021	16			90	0.1		0.2	19.1						57.07 3.45	57.07 3.45	.45 3.66	53.62				
	1110			Steady:	Steady: 0	120	0.1		0.2	19.1													
					0	150	0.1		0.2	19.1													
						180	0.1		0.2	19.1													
				Peak:	Peak: 0	Initial	0		0.1	20.1									9.98 53.62				
					-	30	0		0.1	19.1													
	31/08/2018					60	0		0.1	19.1													
BH105 (D)	1120	1021	16			90	0.1		0.2	19.1						57.07	3.45	3.45 9.98		53.62			
	1110			Steady:	Steady: 0	120	0.1		0.2	19.1													
						150	0.1		0.2	19.1													
						180	0.1		0.2	19.1													
				Peak:	Peak: 0	Initial	0		0.1	20.1													
						30	0		0.1	19.3													
	31/08/2018					60	0.1		0.1	19.3							_						
BH106	1130	1021	16	Chan du	Chand a	90	0.1		0.1	19.3						59.24	Dry	14.97	N/A				
				Steady:	<u>Steady:</u> 0	120	0.1		0.1	19.3													
						150	0.1		0.2	19.3													
				Peak:	Peak:	180	0.1		0.2	19.3													
				reak.	0	Initial	0		0.1	20.4													
						30	0.1		0.5	19.3	-				+								
DU107	31/08/2018	1021	10			60	0.1		0.7	19.6	+					50.24	2.25	5.05	56.00				
BH107	1140	1021	16	Steady:	Steady:	90	0.1		0.7	19.6	-				+	59.24	2.25	5.95	56.99				
				steady.	0	120	-		-	19.6													
						150	0.1		0.7	19.6													
						180	0.1		0.7	19.6													

	Project:		Epsom Hos	pital - Main Hospital Site	Weather:	Overcast with bright spells
AROADIS	Job Number:	10020221	Date:	31/08/2018	Engineer:	SAS

Monitoring Point	Date/ Time	Atmos. Pressure	Temp. (°C)	Well Pressure	Flow Rate (I/h)	Time	CH4	LEL	CO2 (% v/v)	O2 (% v/v)	H2S (ppm)	CO (ppm)	Hex. (%)	PID cf	VOC (ppm)	Surface Elevation	Depth to water (m)	Depth to	Groundwater Elevation	Comments (all readings from GL, not
Reference		(mbar)	(°C)	(Pa)	(i/n)	(sec)	(% v/v)	(%)	(% V/V)	(% V/V)						(m AOD)	water (m)	base (m)	Elevation	datum height if different
				Peak:	Peak:	Initial	0		1.1	16.5										
					0	30	0		2.8	15.9										
	31/08/2018					60	0.1		2.9	15.9										
WS106	1150	1021	16			90	0.1		3.1	15.9						61.10	1.16	4.92	59.94	
	1100			Steady:	<u>Steady:</u> 0	120	0.1		3.1	15.9										
						150	0.2		3.1	15.9										
						180	0.2		3.1	15.9										
				Peak:	Peak: 0	Initial	0		1.2	20.1										
						30	0		1.7	19.9										
	31/08/2018					60	0.1		2.1	19.3										
WS107	1200	1021	16	Steady:	Steady:	90	0.1		2.1	19.3						60.04	2.57	3.92	57.47	
				Steauy.	0	120	0.1		2.4	19.3										
						150	0.2		2.4	19.3										
				Peak:	Peak:	180	0.2		2.4	19.3										
				reak.	0	Initial	0		2.1	20.1										
						30	0		2.5	18.6										
NC100	31/08/2018	1021	10			60	0.1		2.5	17.9						F7 74	Deri	1.05	N1/A	
WS108	1210	1021	16	Steady:	Steady:	90	0.1		2.5	17.9						57.74	Dry	1.05	N/A	
				Steady.	0	120	0.1		2.5	17.9										
						150	0.2		2.5	17.9										
				Peak:	Peak:	180	0.2		2.5	17.9										
				<u>r cutt</u>	0	Initial	0		0.1	20.1										
						30	0		0.1	19.1										
WS110	31/08/2018	1021	16			60	0.1		0.1	19.1 19.1						56.46	Dest	1.12	NI/A	
VV5110	1220	1021	10	Steady:	Steady:	90	-		0.2							50.40	Dry	1.12	N/A	
					0	120 150	0.1		0.2	19.1 19.1										
									0.2											
			+	Peak:	Peak:	180 Initial	0.1		0.2	19.1 20.4									ł	
					0	30	0.1		0.1	18.8										
						60	0.1		1.9	18.4										
WS111	31/08/2018	1021	16			90	0.1		1.9	18.4						59.46	Dry	1.45	N/A	
**5111	1230	1021	10	Steady:	Steady:	120	0.1		1.9	18.4						33.40	Diy	1.45	17/5	
					0	150	0.1		1.9	18.4										
						180	0.1		1.9	18.4										
				Peak:	Peak:	Initial	0.1		0.1	20.4										
					0	30	0		0.1	20.4										
						60	0.1		0.2	20.3					1					
WS112	31/08/2018	1021	16			90	0.1		0.2	20.1					1	59.06	Dry	2.05	N/A	
	1240	1021	10	Steady:	Steady:	120	0.1		0.2	20.1						55.00	51,	2.05		
					0	150	0.1		0.2	20.1										
						180	0.1		0.2	20.1										

AR		P roje	:t:				Ej	psom Hosp	oital - Main	Hospital S	ite]	Weather:			0	vercast with b	right spells
	U-DI.	Jop N	umber:		1	10020221		Date:			13/09/201	8			Engineer:				SC	
Monitoring Point Reference	Date/ Time	Atmos. Pressure (mbar)	Temp. (°C)	Well Pressure (Pa)	Flow Rate (I/h)	Time (sec)	CH4 (% v/v)	LEL (%)	CO2 (% v/v)	O2 (% v/v)	H2S (ppm)	CO (ppm)	Hex. (%)	PID cf	VOC (ppm)	Surface Elevation (m AOD)	Depth to Water (m)	Depth to base (m)	Groundwater Elevation	Comments (all readings from GL, note datum height if different)
AMB	13/9/18 1350	1018	16	N/A	N/A	N/A	0.0	0.0	0.1	20.4	0.0	0.0	0.0	0.0	N/A	N/A	N/A	N/A	N/A	
BH103	13/09/2018 1400	1018	18	Peak: Steady:	<u>Peak:</u> 0 <u>Steady:</u>	Initial 30 60 90										59.23	N/A	N/A	N/A	Unable to be recorded due to patient's car being parked over
				Peak:	0 Peak:	120 150 180 Initial	0		0.1	20.1										installation cover
BH105 (S)	13/9/18 1410	1018	18	<u>Steady:</u>	0 <u>Steady:</u> 0	30 60 90 120 150 180	0 0 0.1 0.1 0.1 0.1 0.1		0.1 0.1 0.2 0.2 0.2 0.2	19.1 19.1 19.1 19.1 19.1 19.1 19.1						57.07	3.39	3.66	53.68	
BH105 (D)	13/9/18 1420	1018	18	<u>Peak:</u> Steady:	<u>Peak:</u> 0 <u>Steadv:</u> 0	Initial 30 60 90 120 150	0.1 0 0.1 0.1 0.1 0.1		0.1 0.1 0.1 0.2 0.2 0.1 0.2	19.1 20.1 19.1 19.1 19.1 19.1 19.1 19.1 19.1 19.1 19.1						57.07	3.4	9.98	53.67	
BH106	13/9/18 1430	1018	18	<u>Peak:</u> Steady:	<u>Peak:</u> 0 <u>Steady:</u> 0	Initial 30 60 90 120 150 180	0 0 0.1 0.1 0.1 0.1 0.1 0.1		0.1 0.1 0.1 0.2 0.1 0.2 0.2	20.1 19.3 19.3 19.3 19.3 19.3 19.3 19.3						59.24	Dry	14.97	N/A	
BH107	13/9/18 1440	1018	18	<u>Peak:</u> <u>Steady:</u>	<u>Peak:</u> 0 <u>Steady:</u> 0	Initial 30 60 90 120 150 180	0 0.1 0.1 0.1 0.1 0.1 0.1		0.1 0.4 0.6 0.6 0.7 0.7 0.7	20.4 19.4 19.5 19.6 19.6 19.6 19.6						59.24	2.23	5.95	57.01	

		Proje	ect:				E	psom Hosp	oital - Main	Hospital S	Site				Weather:			0	vercast with b	ight spells
MAR	CADIS	Job I	Number:		1	10020221		Date:			13/09/201	8			Engineer:				SC	
											-// -	-		1						
Monitoring Point Reference	Date/ Time	Atmos. Pressure (mbar)	Temp. (°C)	Well Pressure (Pa)	Flow Rate (I/h)	Time (sec)	CH4 (% v/v)	LEL (%)	CO2 (% v/v)	O2 (% v/v)	H2S (ppm)	CO (ppm)	Hex. (%)	PID cf	VOC (ppm)	Surface Elevation (m AOD)	Depth to water (m)	Depth to base (m)	Groundwater Elevation	Comments (all readings from GL, note datum height if different)
				Peak:	Peak: 0	Initial	0		0.9	16.5										
					-	30	0		2.5	16.4										
	13/9/18					60	0.1		2.8	16.2										
WS106	1350	1018	18			90	0.1		3	16						61.10	1.12	4.92	59.98	
	1000			Steady:	Steady: 0	120	0.1		3.1	15.9										
					-	150	0.2		3.2	15.9										
						180	0.2		3.1	15.9										
				Peak:	Peak: 0	Initial	0		0.8	20.1										
					č	30	0		1.2	19.9										
	13/9/18					60	0.1		1.9	19.3										
WS107	1100	1018	18			90	0.1		2.1	19.3						60.04	2.54	3.92	57.5	
	1100			Steady:	<u>Steady:</u>	120	0.1		2.3	19.3										
					0	150	0.2		2.4	19.3										
						180	0.2		2.4	19.3										
				Peak:	Peak:	Initial	0		2.1	20.1										
					0	30	0		2.5	18.6										
	13/9/18					60	0.1		2.5	17.9										
WS108	13/9/18	1018	18			90	0.1		2.5	17.9						57.74	Dry	1.05	N/A	
	1110			Steady:	Steady:	120	0.1		2.5	17.9										
					U	150	0.2		2.5	17.9										
						180	0.2		2.5	17.9										
				Peak:	Peak:	Initial	0		0.1	20.1										
					0	30	0		0.1	19.1										
	13/9/18					60	0		0.1	19.1										
WS110	1120	1018	18			90	0.1		0.2	19.1						56.46	Dry	1.12	N/A	
	1120			Steady:	Steady:	120	0.1		0.2	19.1										
					č	150	0.1		0.2	19.1										
						180	0.1		0.2	19.1										
				Peak:	Peak: 0	Initial	0		0.1	20.4										
					Ĭ	30	0.1		0.5	18.8										
	13/9/18					60	0.1		1.9	18.4										
WS111	1130	1018	18			90	0.1		0.4	19.4						59.46	Dry	1.45	N/A	
	1130			Steady:	<u>Steady:</u> 0	120	0.1		0.6	19.5										
					ľ	150	0.1		0.6	18.8										
						180	0.1		1.4	18.4										
				Peak:	<u>Peak:</u> 0	Initial	0		0.1	20.4										
					Ĭ	30	0		0.2	20.3										
	13/9/18					60	0.1		0.2	20.1										
WS112	13/9/18	1018	18			90	0.1		0.2	20.1						59.06	Dry	2.05	N/A	
	1140			Steady:	<u>Steady:</u> 0	120	0.1		0.2	20.1										
					č	150	0.1		0.2	20.1										
						180	0.1		0.2	20.1										

ARCADIS	Project:	Ej	osom Hosp	ital - Main Hospital Site	Weather:	Overcast
AROADIS	Job Number:	10020221	Date:	28/09/2018	Engineer:	М.Т.

Monitoring Point Reference	Date/ Time	Atmos. Pressure (mbar)	Temp. (°C)	Well Pressure (Pa)	Flow Rate (l/h)	Time (sec)	CH4 (% v/v)	LEL (%)	CO2 (% v/v)	O2 (% v/v)	H2S (ppm)	CO (ppm)	Hex. (%)	PID cf	VOC (ppm)	Depth to Water (m)	Depth to base (m)	Comments (all readings from GL, note datum height if different)
				Peak:	Peak:	30	0.1	1.0	2.6	19.5	0	10	-	-				
				0	13	60	0.1	1.0	2.7	19.4	0	10	-	-				
BH103	28/09/2018 08:20	1022	10			90	0.1	1.0	2.7	19.4	0	10	-	-	0	0.43	10.67	
511200	20,00,2010 00120	1011		I	a	120	0.1	1.0	2.7	19.4	0	10	-	-	U U	0110	20107	
				Steady:	<u>Steady:</u>	150 180	0.1	1.0 1.0	2.7 2.7	19.4 19.4	0	10 10	-	-				
				0 Peak:	3 Peak:	30	0.1	2.0	0.4	3.2	0	23	-	-				
				0.1	0.2	60	0.1	2.0	0.4	2.5	0	23	-	-				
BH105				0.1	0.2	90	0.1	2.0	0.4	2.3	0	20	-	-				
(Shallow)	28/09/2018 07:15	1022	8		-	120	0.1	2.0	0.4	2.2	0	18	-	-	0	1.28	2.99	
, ,				Steady:	Steady:	150	0.1	2.0	0.4	2.1	0	17	-	-				
				0	0	180	0.1	2.0	0.4	2.0	0	16	-	-				
				Peak:	Peak:	30	0.1	1.0	0.4	18.0	0	5	-	-				
				0	-12.5	60	0.1	1.0	0.4	18.3	0	5	-	-				
BH105	28/09/2018 07:20	1022	8			90	0.1	1.0	0.4	18.4	0	5	-	-	0	2.33	10.01	
(Deep)	28/09/2018 07.20	1022				120	0.1	1.0	0.4	18.5	0	6	-	-	0	2.55	10.01	
				Steady:	Steady:	150	0.1	1.0	0.4	18.5	0	6	-	-				
				0	-1.2	180	0.1	1.0	0.4	18.5	0	6	-	-				
				Peak:	Peak:	30	0.1	1.0	1.2	14.9	0	6	-	-				
				0	0	60	0.1	1.0	1.2	14.9	0	6	-	-				
					-	90	0.1	1.0	1.2	15.0	0	6	-	-				
BH106	28/09/2018 10:25	1024	10	Steady:	Steady:	120	0.1	1.0	1.1	15.1	0	6	-	-	0	11.15	14.82	
				Steady.	Steady.	150	0.1	1.0	1.1	15.2	0	6	-	-				
				0	0	180	0.1	1.0	1.1	15.6	0	6	-	-				
					-	210 240	0.1	1.0 1.0	1.0 0.9	15.9 16.2	0	0	-	-				
				Peak:	Peak:	30	0.1	1.0	0.9	20.7	0	4	-	-				
				0	redk.	60	0.1	1.0	0.6	20.7	0	4	-	-				
				U	0	90	0.1	1.0	0.6	20.7	0	4	-	-				
BH107	28/09/2018 10:15	1024	10		Ŭ.	120	0.1	1.0	0.6	20.7	0	4	-	-	0	2.21	5.94	
				Steady:	Steady:	150	0.1	1.0	0.6	20.7	0	4	-	-				
				0	0	180	0.1	1.0	0.6	20.7	0	4	-	-				

	Project:	E	osom Hospi	ital - Main Hospital Site	Weather:	Overcast
AROADIS	Job Number:	10020221	Date:	28/09/2018	Engineer:	М.Т.

Monitoring Point Reference	Date/ Time	Atmos. Pressure (mbar)	Temp. (°C)	Well Pressure (Pa)	Flow Rate (l/h)	Time (sec)	CH4 (% v/v)	LEL (%)	CO2 (% v/v)	O2 (% v/v)	H2S (ppm)	CO (ppm)	Hex. (%)	PID cf	VOC (ppm)	Depth to Water (m)	Depth to base (m)	Comments (all readings from GL, note datum height if different)
				Peak:	Peak:	30	0.0	0.0	0.4	20.9	0	5	-	-				
				<u>0</u>	0	60	0.1	1.0	0.4	20.9	0	5	-	-				
WS 106	28/09/2018 09:30	1024	10			90	0.1	1.0	0.4	20.9	0	5	-	-	0	1.14	4.92	
VV3 100	28/09/2018 09.30	1024	10			120	0.1	1.0	0.4	20.9	0	5	-	-	0	1.14	4.92	
				Steady:	Steady:	150	0.1	1.0	0.4	20.9	0	4	-	-	_			
				<u>0</u>	0	180	0.1	1.0	0.4	20.9	0	4	-	-				
				Peak:	Peak:	30	0.1	1.0	0.2	20.9	0	4	-	-	_			
				<u>0</u>	0	60	0.1	1.0	0.2	20.9	0	4	-	-	-			
WS 107	28/09/2018 09:45	1024	10		-	90	0.1	1.0	0.2	20.9	0	4	-	-	0	2.07	3.90	
	20,00,2020 00110	101 .				120	0.1	1.0	0.2	20.8	0	4	-	-	, i i	2.07	0.00	
				Steady:	Steady:	150	0.1	1.0	0.2	20.7	0	4	-	-	-			
				<u>0</u>	0	180	0.1	1.0	0.3	20.7	0	4	-	-				
				Peak:	Peak:	30	0.1	1.0	0.6	21.0	0	8	-	-	-			
				<u>0</u>	0	60	0.1	1.0	0.6	21.0	0	7	-	-	-			
WS 108	28/09/2018 08:40	1022	10		-	90	0.1	1.0	0.6	21.0	0	7	-	-	0	Dry	1.04	
				Steady:	Steady:	120 150	0.1	1.0 1.0	0.6	21.0 21.0	0	7	-	-	-			
						130	0.1	1.0	0.7	21.0	0	7	-	-	-			
				<u>0</u> Peak:	0 Peak:	30	0.1	1.0	1.5	19.8	0	4	-	-				
				0	0	60	0.1	1.0	1.5	19.8	0	4	-	-	-			
				<u>u</u>	0	90	0.1	1.0	1.5	19.8	0	4	-	-	-			
WS 111	28/09/2018 10:45	1024	12		-	120	0.1	1.0	1.5	19.7	0	4	-	-	0	1.36	1.39	
				Steady:	Steady:	150	0.1	1.0	1.5	19.7	0	4	-	-	-			
				0	0	180	0.1	1.0	1.5	19.7	0	4	-	-				
				_	-	210	0.1	1.0	1.5	19.6	0	4	-	-				
				Peak:	Peak:	30	0.1	1.0	0.1	21.2	0	3	-	-				
				<u>o</u>	0	60	0.1	1.0	0.1	21.2	0	3	-	-]			
WS 112	28/09/2018 10:35	1024	11			90	0.1	1.0	0.1	21.2	0	3	-	-	0	Dry	2.04	
VV 3 112	20/09/2010 10:35	1024	11			120	0.1	1.0	0.1	21.2	0	3	-	-	U	DIY	2.04	
				Steady:	Steady:	150	0.1	1.0	0.1	21.2	0	3	-	-				
				<u>0</u>	0	180	0.1	1.0	0.1	21.2	0	3	-	-				

APPENDIX F - Geotechnical Laboratory Testing Data

GEO Site & Testing Services Ltd

Contract Number: 40564

Client Ref: 10020221 Client PO:

Laboratory Report

Report Date: 17-09-2018

Client Arcadis Fortran Rd St Mellons Cardiff CF3 0EY

Contract Title: **Epsom Hospital- Main Hospital site** For the attention of: **Mark Wilson**

Date Received: 03-09-2018 Date Commenced: 03-09-2018 Date Completed: 17-09-2018

Test D	Description	Qty
Mois	ture Content	29
BS 13	77:1990 - Part 2 : 3.2 - * UKAS	
4 Po	int Liquid & Plastic Limit (LL/PL)	18
BS 13	77:1990 - Part 2 : 4.3 & 5.3 - * UKAS	
PSD	Wet Sieve method	2
BS 13	77:1990 - Part 2 : 9.2 - * UKAS	
PSD:	: Sedimentation by pipette carried out with Wet Sieve (Wet Sieve must also be selected)	1
BS 13	77:1990 - Part 2 : 9.4 - * UKAS	
One-	dimensional Consolidation 75mm or 50mm diameter specimens (5 days)	1
BS 13	77:1990 - Part 5 : 3 - * UKAS	
	k Undrained Triaxial Compression Test - Multi-stage Loading of a single specimen (100mm	6
diam BS137	leter) 77 : 1990 Part 7 : 9 - * UKAS	
Notes:	Observations and Interpretations are outside the UKAS Accreditation	
	 * - denotes test included in laboratory scope of accreditation # - denotes test carried out by approved contractor 	
	@ - denotes non accredited tests	
This cer elate or	tificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reporting to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approved to the material supplied to the laboratory.	ted herein al of the labora
	ed Signatories:	
,	nn (Associate Director) - Ben Sharp (Contracts Manager) - Emma Sharp (Office Manager)	

Paul Evans (Quality/Technical Manager) - Richard John (Advanced Testing Manager) - Sean Penn (Administrative/Accounts Assistant) Wayne Honey (Administrative/Quality Assistant)

GEO Site & Testing Services Ltd Unit 3-4, Heol Aur, Dafen Ind Estate, Dafen, Llanelli, Carmarthenshire SA14 8QN Tel: 01554 784040 Fax: 01554 784041 info@gstl.co.uk gstl.co.uk

1

Contract Number: 40564

Test Description C	Qty
(GI) BRE SD1 Reduced Suite pH, Acid Soluble Sulphate, Water Soluble Sulphate and Total Sulphur BS 1377:1990 - Part 3 & BRE CP2/79 - @ Non Accredited Test	5

Disposal of samples for job

Notes: Observations and Interpretations are outside the UKAS Accreditation

- * denotes test included in laboratory scope of accreditation # - denotes test carried out by approved contractor
- @ denotes non accredited tests

This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory. **Approved Signatories:**

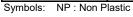
Alex Wynn (Associate Director) - Ben Sharp (Contracts Manager) - Emma Sharp (Office Manager) Paul Evans (Quality/Technical Manager) - Richard John (Advanced Testing Manager) - Sean Penn (Administrative/Accounts Assistant) Wayne Honey (Administrative/Quality Assistant)

60	T/L	LIG				IIT AND PLASTICIT) : 1990 Method 5) PTIONS		
Contract Number					405	565		
Site Name					Epsom Hosp	oital- Main Hospital sit	e	
Hole Reference	Sample Number	Sample Type	D	epth (n	n)		Descriptions	
BH103	7	D	3.00	-	3.10		Grey silty CLAY.	
BH103	8	U	4.00	-	4.45		Grey silty CLAY.	
BH103	13	D	6.00	-	6.10		Brown silty CLAY.	
BH103	14	U	6.50	-	6.95		Grey silty CLAY.	
	───			-				

40564Site Name40564Site NameSite State	GS	T/L	LIG			1377 : Pa	LIMIT AND PLASTICITY INDEX art 2 : 1990 Method 5) CRIPTIONS
Hole Reference Sample Number Sample Type Descriptions BH105 14 D 2.00 - 2.45 Brown fine to coarse sandy silty CLAY. BH105 14 D 2.00 - 2.45 Brown fine to coarse sandy silty CLAY. BH105 14 D 2.00 - 2.45 Brown fine to coarse sandy silty CLAY. BH106 5 B 0.50 - 0.70 Brown fine to coarse sandy silty CLAY. BH106 14 B 3.00 - 3.45 Brown fine to coarse sandy silty CLAY. BH106 14 B 3.00 - 3.45 Brown fine to coarse sandy silty CLAY. BH106 16 D 4.05 5.60 Grey sandy silty CLAY. BH106 19 D 5.50 - 5.60 Brown fine to coarse gravely SAND. BH107 1 B 0.50 - 6.60 Brown silty clay. BH107 1 B 0.50 - 1.00 Brown silty clay. <th>Contract Number</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>40564</th>	Contract Number						40564
Hole Reference Number Type Type BH105 14 D 2.00 - 2.45 Brown fine to coarse sandy silty CLAY. BH105 20 D 4.00 - 4.45 Grey sandy silty CLAY. BH106 5 B 0.50 - 0.70 Brown fine to coarse sandy silty CLAY. BH106 14 B 3.00 - 3.45 Brown fine to coarse sandy silty CLAY. BH106 16 D 4.00 - 4.45 Brown fine to coarse sandy silty CLAY. BH106 16 D 4.00 - 4.45 Brown fine to coarse sandy silty CLAY. BH106 19 D 5.50 - 5.60 Grey sandy silty CLAY. BH106 20 D 6.50 - 6.60 Black silty CLAY. BH107 1 B 0.50 - 1.00 Brown silty clayer fine to coarse gravelly SAND. BH107 13 D 4.50 - 4.60 Brown silty CLAY.	Site Name				Eps	om Hospi	tal- Main Hospital site
Hole Reference Number Type Type Description BH105 14 D 2.00 - 2.45 Brown fine to coarse sandy silty CLAY. BH105 20 D 4.00 - 4.45 Grey sandy silty CLAY. BH106 5 B 0.50 - 0.70 Brown fine to coarse sandy silty CLAY. BH106 14 B 3.00 - 3.45 Brown fine to coarse sandy silty CLAY. BH106 16 D 4.00 - 4.45 Brown fine to coarse sandy silty CLAY. BH106 19 D 5.50 - 5.60 Grey sandy silty CLAY. BH106 19 D 5.50 - 6.60 Black silty CLAY. BH107 1 B 0.50 - 1.00 Brown silty clayey fine to coarse gravelly SAND. BH107 13 D 4.50 - 4.60 Brown silty CLAY. BH107 14 D 5.00 - 5.10 Grey silty CLAY.							
Hole Reference Number Type Constraint BH105 14 D 2.00 - 2.45 Brown fine to coarse sandy silty CLAY. BH105 20 D 4.00 - 4.45 Grey sandy silty CLAY. BH106 5 B 0.50 - 0.70 Brown fine to coarse sandy silty CLAY. BH106 14 B 3.00 - 3.45 Brown fine to coarse sandy silty CLAY. BH106 16 D 4.00 - 4.45 Brown fine to coarse sandy silty CLAY. BH106 16 D 4.00 - 4.45 Brown fine to coarse sandy silty CLAY. BH106 19 D 5.50 - 5.60 Grey sandy silty CLAY. BH106 20 D 6.50 - 6.60 Black silty CLAY. BH107 1 B 0.50 - 1.00 Brown silty clayey fine to coarse gravelly SAND. BH107 13 D 4.50 - 5.10 Grey silty CLAY. </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
BH105 20 D 4.00 - 4.45 Grey sandy silty CLAY. BH106 5 B 0.50 - 0.70 Brown fine to coarse sandy silty CLAY. BH106 14 B 3.00 - 3.45 Brown fine to coarse sandy silty CLAY. BH106 16 D 4.00 - 4.45 Brown fine to coarse sandy silty CLAY. BH106 16 D 4.00 - 4.45 Brown fine to coarse sandy silty CLAY. BH106 16 D 4.00 - 4.45 Brown fine to coarse sandy silty CLAY. BH106 19 D 5.50 - 5.60 Grey sandy silty CLAY. BH106 20 D 6.50 - 6.60 Black silty CLAY. BH107 1 B 0.50 - 1.00 Brown silty clayey fine to coarse gravelly SAND. BH107 13 D 4.50 - 4.60 Brown silty CLAY. BH107 15 D 6.00 - <td>Hole Reference</td> <td></td> <td></td> <td>D</td> <td>epth (i</td> <td>m)</td> <td>Descriptions</td>	Hole Reference			D	epth (i	m)	Descriptions
BH106 5 B 0.50 - 0.70 Brown fine to coarse sandy silty CLAY. BH106 14 B 3.00 - 3.45 Brown fine to coarse sandy silty CLAY. BH106 16 D 4.00 - 4.45 Brown fine to coarse sandy silty CLAY. BH106 16 D 4.00 - 4.45 Brown fine to coarse sandy silty CLAY. BH106 19 D 5.50 - 5.60 Grey sandy silty CLAY. BH106 20 D 6.50 - 6.60 Black silty CLAY. BH107 1 B 0.50 - 1.00 Brown silty clayey fine to coarse gravelly SAND. BH107 13 D 4.50 - 4.60 Brown silty CLAY. BH107 14 D 5.00 - 5.10 Grey silty CLAY. BH107 15 D 6.00 - 6.10 Grey silty CLAY. BH107 22 D 11.00 11.10 Grey silt	BH105	14	D	2.00	-	2.45	Brown fine to coarse sandy silty CLAY.
BH106 14 B 3.00 - 3.45 Brown fine to coarse sandy silty CLAY. BH106 16 D 4.00 - 4.45 Brown fine to coarse sandy silty CLAY. BH106 19 D 5.50 - 5.60 Grey sandy silty CLAY. BH106 19 D 5.50 - 6.60 Black silty CLAY. BH106 20 D 6.50 - 6.60 Black silty CLAY. BH107 1 B 0.50 - 1.00 Brown silty clayey fine to coarse gravelly SAND. BH107 13 D 4.50 - 4.60 Brown silty CLAY. BH107 14 D 5.00 - 5.10 Grey silty CLAY. BH107 15 D 6.00 - 6.10 Grey silty CLAY. BH107 22 D 11.00 - 11.10 Grey silty CLAY. BH107 22 D 11.00 - 11.00 Grey silty CLAY. <td>BH105</td> <td>20</td> <td>D</td> <td>4.00</td> <td>-</td> <td>4.45</td> <td>Grey sandy silty CLAY.</td>	BH105	20	D	4.00	-	4.45	Grey sandy silty CLAY.
BH106 16 D 4.00 - 4.45 Brown fine to coarse sandy silty CLAY. BH106 19 D 5.50 - 5.60 Grey sandy silty CLAY. BH106 20 D 6.50 - 6.60 Black silty CLAY. BH107 1 B 0.50 - 1.00 Brown silty clayey fine to coarse gravelly SAND. BH107 13 D 4.50 - 4.60 Brown silty CLAY. BH107 13 D 4.50 - 4.60 Brown silty CLAY. BH107 14 D 5.00 - 5.10 Grey silty CLAY. BH107 15 D 6.00 - 6.10 Grey silty CLAY. BH107 22 D 11.00 - 11.10 Grey silty CLAY. BH107 22 D 11.00 - 11.10 Grey silty CLAY. BH107 - - - - - -	BH106	5	В	0.50	-	0.70	Brown fine to coarse sandy silty CLAY.
BH106 19 D 5.50 - 5.60 Grey sandy silty CLAY. BH106 20 D 6.50 - 6.60 Black silty CLAY. BH107 1 B 0.50 - 1.00 Brown silty clayer fine to coarse gravelly SAND. BH107 13 D 4.50 - 4.60 Brown silty CLAY. BH107 14 D 5.00 - 5.10 Grey silty CLAY. BH107 15 D 6.00 - 5.10 Grey silty CLAY. BH107 15 D 6.00 - 6.10 Grey silty CLAY. BH107 12 D 11.00 - 11.10 Grey silty CLAY. BH107 22 D 11.00 - 11.10 Grey silty CLAY. BH107 22 D 11.00 - 11.00 Grey silty CLAY. BH107 - - - - - -	BH106	14	В	3.00	-	3.45	Brown fine to coarse sandy silty CLAY.
BH106 20 D 6.50 - 6.60 Black silty CLAY. BH107 1 B 0.50 - 1.00 Brown silty clayer fine to coarse gravelly SAND. BH107 13 D 4.50 - 4.60 Brown silty CLAY. BH107 14 D 5.00 - 5.10 Grey silty CLAY. BH107 15 D 6.00 - 6.10 Grey silty CLAY. BH107 15 D 6.00 - 6.10 Grey silty CLAY. BH107 22 D 11.00 - 11.10 Grey silty CLAY. BH107 22 D 11.00 - 11.10 Grey silty CLAY. Image: Description of the second seco	BH106	16	D	4.00	-	4.45	Brown fine to coarse sandy silty CLAY.
BH107 1 B 0.50 - 1.00 Brown silty clayey fine to coarse gravelly SAND. BH107 13 D 4.50 - 4.60 Brown silty CLAY. BH107 14 D 5.00 - 5.10 Grey silty CLAY. BH107 15 D 6.00 - 6.10 Grey silty CLAY. BH107 22 D 11.00 - 11.10 Grey silty CLAY. BH107 22 D 11.00 - 11.10 Grey silty CLAY. BH107 22 D 11.00 - 11.10 Grey silty CLAY.	BH106	19	D	5.50	-	5.60	Grey sandy silty CLAY.
BH107 13 D 4.50 - 4.60 Brown silty CLAY. BH107 14 D 5.00 - 5.10 Grey silty CLAY. BH107 15 D 6.00 - 6.10 Grey silty CLAY. BH107 15 D 11.00 - 11.10 Grey silty CLAY. BH107 22 D 11.00 - 11.10 Grey silty CLAY. BH107 22 D 11.00 - 11.10 Grey silty CLAY. BH107 22 D 11.00 - 11.10 Grey silty CLAY.	BH106	20	D	6.50	-	6.60	Black silty CLAY.
BH107 14 D 5.00 - 5.10 Grey silty CLAY. BH107 15 D 6.00 - 6.10 Grey silty CLAY. BH107 22 D 11.00 - 11.10 Grey silty CLAY. BH107 22 D 11.00 - 11.10 Grey silty CLAY. BH107 22 D 11.00 - 11.10 Grey silty CLAY. BH107 22 D 11.00 - 11.10 Grey silty CLAY.	BH107	1	В	0.50	-	1.00	Brown silty clayey fine to coarse gravelly SAND.
BH107 15 D 6.00 - 6.10 Grey silty CLAY. BH107 22 D 11.00 - 11.10 Grey silty CLAY. Image: Second structure - - - - - Image: Second structure - - - - -	BH107	13	D	4.50	-	4.60	Brown silty CLAY.
BH107 22 D 11.00 - 11.10 Grey silty CLAY. Image: Constraint of the second secon	BH107	14	D	5.00	-	5.10	Grey silty CLAY.
	BH107	15	D	6.00	-	6.10	Grey silty CLAY.
	BH107	22	D	11.00	-	11.10	Grey silty CLAY.
					-		
					-		
		ļ					

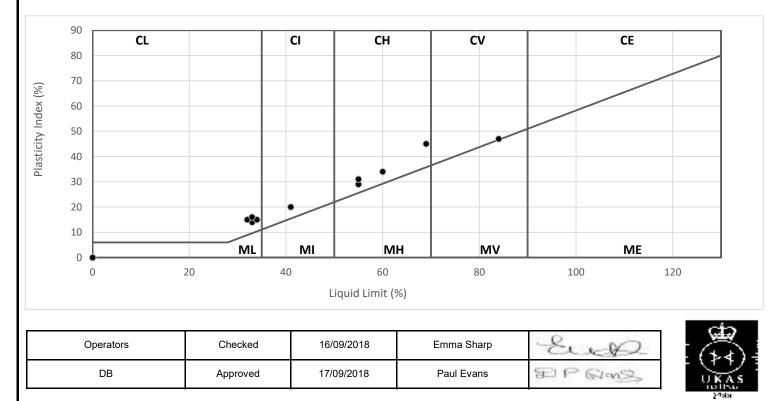
Operators	Checked	16/09/2018	Emma Sharp	Euco
RO/MH	Approved	17/09/2018	Paul Evans	P P Stores

G	S	ΓL	LIC				C LIMIT A art 2 : 199			INDEX				
Con	tract Number			40565										
Site	Name					Epsom	Hospital-	Main Ho	spital site	9				
Но	le Reference	Sample Number	Туре				Moisture Content %	Liquid Limit %	Plastic Limit %	Plasticity index %	Passing .425mm %	Remarks		
	BH103	7	D	3.00	-	3.10	36	62	26	36	100	CH High Plasticity		
	BH103 BH103	8 13	U D	4.00	-	4.45 6.10	33 31	69	24	45	100	CH High Plasticity		
	BH103	14	U	6.50	-	6.95	29				-	. ,		
					-									
						BS 59	30:1999+A	ANDE CL 2:2010						
	90	CL			CI	BS 59		2:2010	:V		CE			
y Index (%)		CL			CI	BS 59	30:1999+A	2:2010			CE			
Plasticity Index (%)	80 70 60	CL			С	BS 59	30:1999+A	2:2010			CE			
Plasticity Index (%)	80 70 60 50 40 30 20 10	CL		ML		BS 59	30:1999+A	2:2010			CE			
Plasticity Index (%)	80 70 60 50 40 30 20		20		MI	•	30:1999+A	2:2010 C	•	100	ME	120		
Plasticity Index (%)	80 70 60 50 40 30 20 10 0		20	ML	MI	•	30:1999+A CH MH 60 imit (%)	2:2010 C	W M 30		ME			


LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX (BS 1377 : Part 2 : 1990 Method 5)

Contract Number

40564


Site Name											
Hole Reference	Sample Number	Sample Type	D	epth (m)	Moisture Content %	Liquid Limit %	Plastic Limit %	Plasticity index %	Passing .425mm %	Remarks
BH105 14 D 2.00 - 2.45				17	33	19	14	50	CL Low Plasticity		
BH105	19	D	D 3.80 - 3.90								
		_									

BH105	20	D	4.00	-	4.45	25	41	21	20	100	CI Intermediate Plasticity
BH105	2	U	5.00	-	5.45	27					
BH106	5	В	0.50	-	0.70	19	32	17	15	61	CL Low Plasticity
BH106	14	В	3.00	-	3.45	14	34	19	15	56	CL Low Plasticity
BH106	16	D	4.00	-	4.45	12	33	17	16	60	CL Low Plasticity
BH106	18	U	5.00	-	5.45	31					
BH106	19	D	5.50	-	5.60	32	60	26	34	100	CH High Plasticity
BH106	20	D	6.50	-	6.60	34	55	26	29	100	CH High Plasticity
BH107	1	В	0.50	-	1.00	21		NP		24	#VALUE!
BH107	7	В	2.00	-	2.50	9.4					
BH107	12	U	4.00	-	4.45	28					
BH107	13	D	4.50	-	4.60	27	69	24	45	100	CH High Plasticity
BH107	14	D	5.00	-	5.10	32					
BH107	15	D	6.00	-	6.10	44	84	37	47	100	CV Very High Plasticity
BH107	16	U	6.50	-	6.95	26					
BH107	20	U	9.50	-	9.95	31					
BH107	22	D	11.00	-	11.10	25	55	24	31	100	CH High Plasticity
BH107	24	U	12.50	-	12.95	14					
				-							
				-							
				-							
				-							

astic #: Liquid Limit and Plastic Limit Wet Sieved

PLASTICITY CHART FOR CASAGRANDE CLASSIFICATION BS 5930:1999+A2:2010

G	STL

LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX (BS 1377 : Part 2 : 1990 Method 5)

DESCRIPTIONS

WS106

WS107

WS107

WS109

WS110

WS111

WS111

13

9

11

4

2

5

6

D

D

D

В

В

Т

L

4.00

1.20

3.00

0.70

0.30

1.20

2.00

-

-

-

-

-

-

-

------_ -_ ------

4.45

1.65

3.45

0.90

0.50

2.00

3.00

Contract Number 40564 **Epsom Hospital- Main Hospital site** Sample Sample Depth (m) Descriptions Hole Reference Number Туре WS106 10 D 1.20 1.65 Brown fine to medium gravelly sandy silty CLAY. -WS106 11 D 2.45 Brown fine to medium gravelly sandy silty CLAY. 2.00 -

Brown fine to medium gravelly sandy silty CLAY.

Brown fine to medium gravelly sandy silty CLAY.

Brown fine to medium gravelly sandy silty CLAY.

Brown fine to medium gravelly sandy silty CLAY.

Brown fine to medium gravelly sandy silty CLAY.

Brown fine to medium gravelly sandy silty CLAY.

Brown silty CLAY.

Operators	Checked	16/09/2018	Emma Sharp	-Eugo
RO/MH	Approved	17/09/2018	Paul Evans	8 P Gans

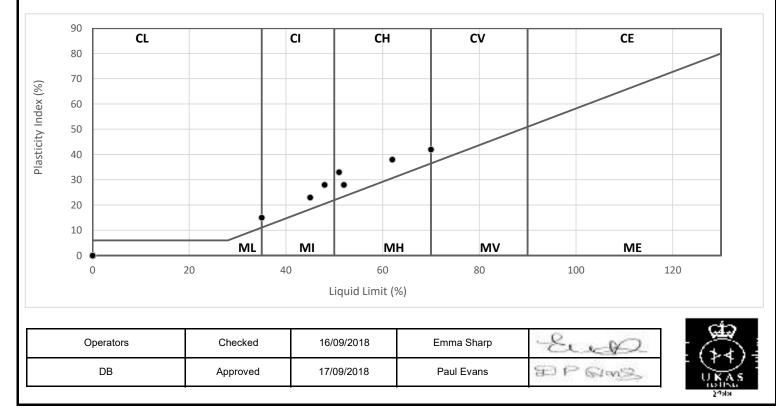
LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX (BS 1377 : Part 2 : 1990 Method 5)

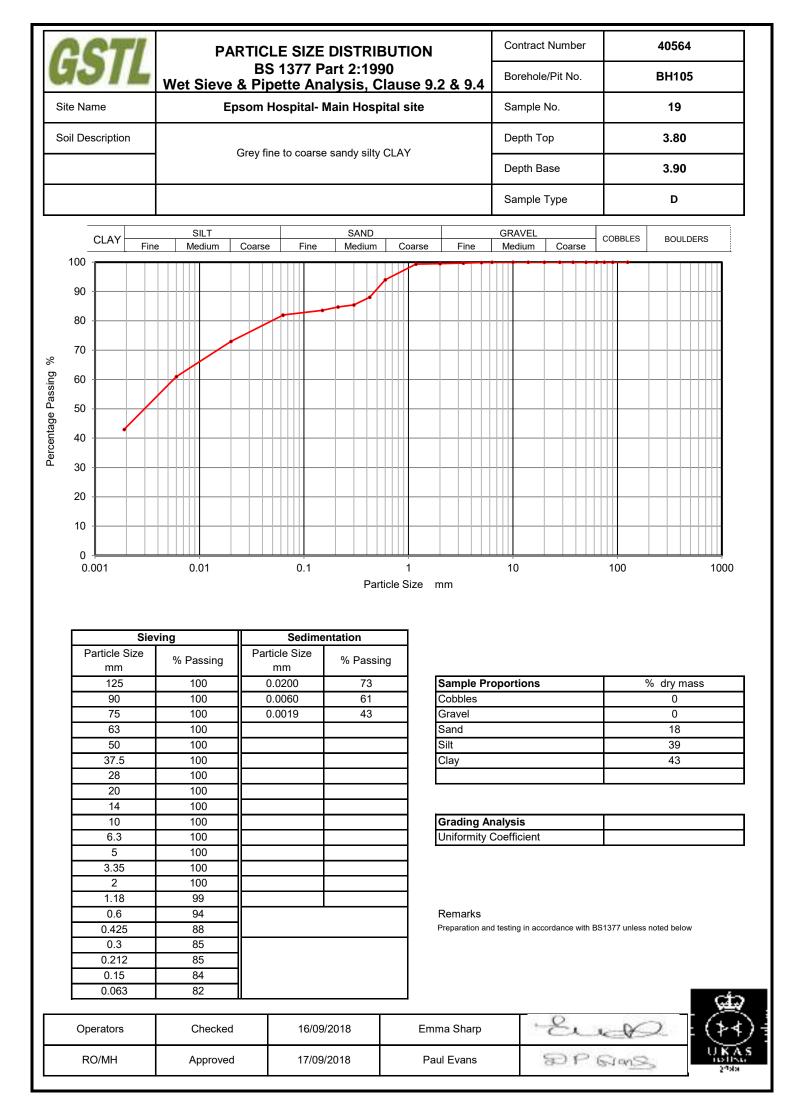
Contract Number

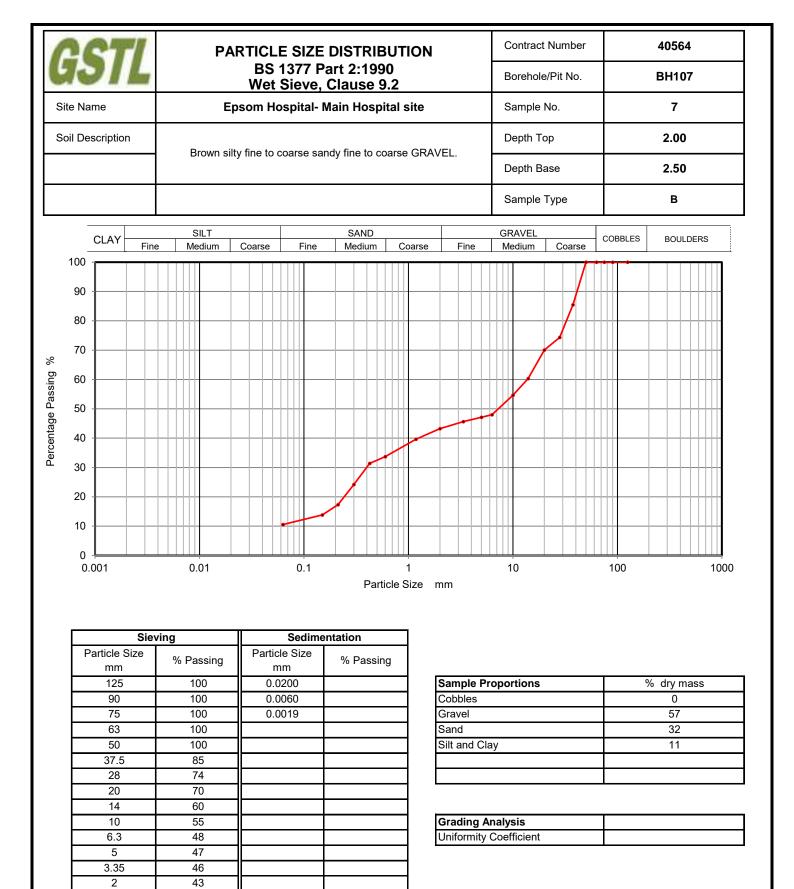
Site Name

40564

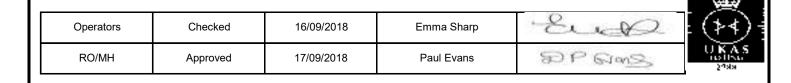
Epsom Hospital- Main Hospital site


Hole Reference	Sample Number	Sample Type	D	epth (r	n)	Moisture Content %	Liquid Limit %	Plastic Limit %	Plasticity index %	Passing .425mm %	Remarks
WS106	10	D	1.20	-	1.65	21	51	18	33	83	CH High Plasticity
WS106	11	D	2.00	-	2.45	31	70	28	42	84	CH/V High/HighPlastic
WS106	13	D	4.00	-	4.45	23	52	24	28	100	CH High Plasticity
WS107	9	D	1.20	-	1.65	29	45	22	23	87	CI Intermediate Plastic
WS107	11	D) 3.00 - 3.45			25	48	20	28	100	CI Intermediate Plastic
WS109	4	В	0.70	-	0.90	20					
WS110	2	В	0.30	-	0.50	14	35	20	15	59	CL/I Low/Inter. Plastic
WS111	5	I	1.20	-	2.00	14					
WS111	6	I	2.00	-	3.00	32	62	24	38	100	CH High Plasticity
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-		ļ					
				-							
				-		 					




astic # : Liquid Limit and Plastic Limit Wet Sieved

PLASTICITY CHART FOR CASAGRANDE CLASSIFICATION


BS 5930:1999+A2:2010

Remarks
Preparation and testing in accordance with BS1377 unless noted below

1.18

0.6

0.425

0.3

0.212

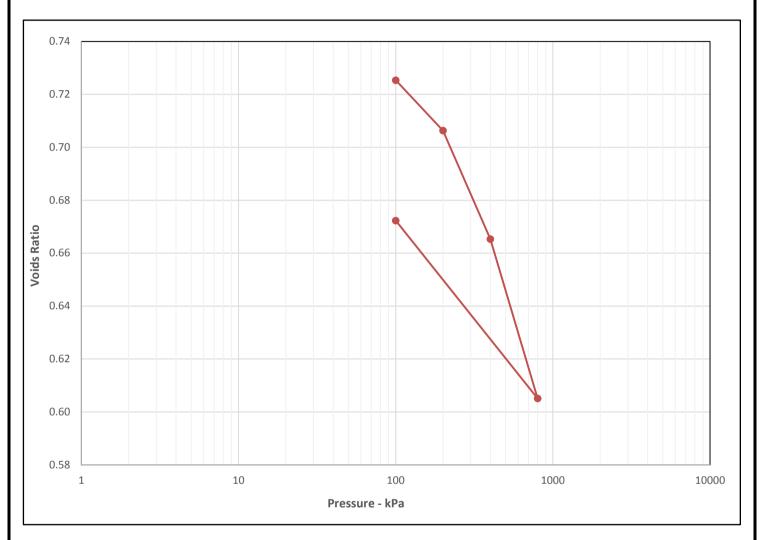
0.15

40

34

31

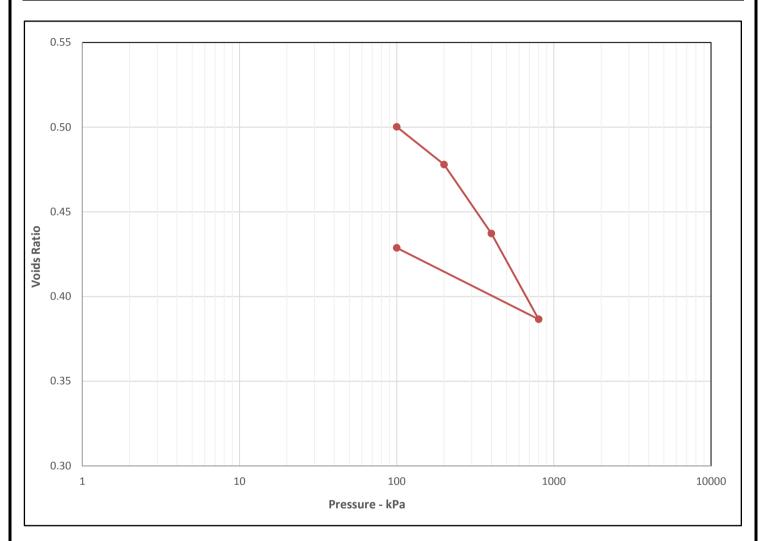
24


17 14

11

CCTI		Cert	ificate	e of	Ch	emical	Analysis	5	Contract	Number		40565	
GSTL				(BR	ΕB	SR 279)			Client R	eference		10020221	
Client					Arca	adis			Date Received				
Site Name			Ep	som I	Hosp	ital- Main ⊦	Hospital site Date Started				06/09/2018		
									Date Co	mpleted		26/09/2018	
									No. of S	Samples		7	
Hole Number San Nun	nple nber	Sample Type		Dep	pth (r	n)	Acid Soluble Sulphate	Aqueous Extract Sulphate	Chloride Content	Ph Value	Total Sulphur	Magnesium	Nitrate
BH103 8	8	U	4.00)	-	4.45	0.49	0.11		6.97	0.19		
					-								
					-								
					-								
					-								
					-								
					-								
				-									
					-								
					-								
					-								
					-								
					-								
					-								
					-								
					-								
					-								
					-								
					-								
					-							ļļ	
Kau					-								
Key	ato		ted As					K 1.		l <mark>arks</mark> Ioride Prese	nt		
Acid Soluble Sulpha			SO ₄					IN		ionue Prese	91 IL		
Chloride Content (Se	Aqueous Extract Sulphate g/l SO ₄ Chloride Content (Semi) mg Cl/l												
PH Value @ 25°													
Total Sulphur % S													
Magnesium g/I SO ₄													
Nitrate NO ₃ mg/l													
Test Operator Checked and Authorised by					by			_]		
Darren Bourne					/2018	Ben	Sharp	U	×	\geq			

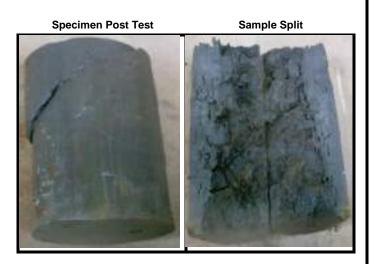
(BRE BR 279) Client Reference 10020221 Client Artadia Date Received Image: Client Research 000092018 Site Name Eptom Hospital - Main Hospital Site Date Started 000092018 Date Completed 1708/2018 Date Started 000092018 Hold Number Sample Date Completed 1708/2018 Hold Number Sample Depth (m) Add Matematic State St	GST	1	Cert				Analysis	5	Contract	t Number		40564	
Site Name Eprom Hospital - Main Hospital Site Date Standed 060992018 Date Completed 1708/2018 No. of Samples 5 Hole Number Sample Depth (m) Saluble Supplies Contrain Ph Value Supplies Contrain Ph Value Supplies No. All travel BH 106 16 D 4.000 4.445 0.31 O.06 7.81 0.11 Image: Supplies No. All travel W15109 4 B 0.70 0.90 0.08 0.08 7.30 0.05 Image: Supplies Image: Supplies Image: Supplies Image: Supplies Image: Supplies Image: Supplies	601			(В	REE	BR 279)			Client R	eference	10020221		
Date Completed 17/09/2018 Hole Number Sample Type Depth (m) Soluble Soluble Soluble Acid Extract Extract Choiride Content Ph Value Type Total Magnesium Magnesium Nitrate BH106 14 B 3.00 - 3.50 0.27 0.06 7.51 0.11 - BH106 16 D 4.00 - 4.45 0.31 0.05 7.72 0.14 - BH107 12 U 4.00 - 4.45 0.31 0.05 7.74 0.14 - WS109 4 B 0.70 - 0.90 0.08 7.30 0.05 - WS111 5 L 1.20 - 0 -	Client				Arc	adis			Date Received				
No. of Samples 5 Hole Number Sample Total Soluble So	Site Name	9	I	Epsom Hos	spital -	Main Hospi	tal Site		Date Started			06/09/2018	
Hole Number Sample Type Deptr (m) Add Soluble Soluble Extract Choride Content Pt Value Total Supplier Magnesium Nitrate BH105 18 B 3.00 - 3.50 0.27 0.06 7.51 0.11 - BH107 16 D 4.45 0.31 0.06 7.82 0.14 - W3109 4 B 0.70 - 0.90 0.08 0.08 7.30 0.05 - WS111 5 L 1.20 - 2.00 0.27 0.05 7.28 0.12 - WS111 5 L 1.20 - 2.00 0.27 0.05 7.28 0.12 - WS111 5 L 1.20 - 2.00 0.27 0.05 7.28 0.12 - WS111 5 L 1.20 - - - - - - - - - - <									Date Co	mpleted		17/09/2018	
Hole Number Ownpare Number Depth (m) Saluble Extract Content Ph Value Statute Supprise Ownpare Supprise Number Supprise Numer Suppris Number Suppris Nume									No. of S	Samples		5	
Hole Number Ownpare Number Depth (m) Saluble Extract Content Ph Value Statute Supprise Ownpare Supprise Number Supprise Numer Suppris Number Suppris Nume							Acid	Aqueous	1				
BH106 16 D 4.00 - 4.45 0.31 0.06 7.82 0.14 BH107 12 U 4.00 - 4.45 0.31 0.05 7.47 0.14 WS109 4 B 0.70 0.90 0.08 7.32 0.14 WS109 4 B 0.70 0.90 0.08 7.32 0.12 WS111 5 L 1.20 - 2.00 0.27 0.05 7.28 0.12 L </td <td>Hole Number</td> <td></td> <td></td> <td>C</td> <td>)epth (</td> <td>m)</td> <td>Soluble</td> <td>Extract</td> <td></td> <td>Ph Value</td> <td></td> <td>Magnesium</td> <td>Nitrate</td>	Hole Number			C)epth (m)	Soluble	Extract		Ph Value		Magnesium	Nitrate
BH107 12 U 4.00 - 4.45 0.31 0.05 7.47 0.14 WS109 4 B 0.70 - 0.09 0.08 7.30 0.05 WS111 5 L 1.20 2.00 0.27 0.05 7.28 0.12 WS111 5 L 1.20 2.00 0.27 0.05 7.28 0.12 WS111 5 L 1.20 2.00 0.27 0.05 7.28 0.12 WS111 5 L 1.20 2.00 0.27 0.05 7.28 0.12 WS111 5 L 1.20 2.00 0.27 0.05 7.28 0.12 WS109 4 0 - <td></td> <td></td> <td>В</td> <td>3.00</td> <td>-</td> <td>3.50</td> <td></td> <td>0.06</td> <td></td> <td>7.51</td> <td>0.11</td> <td></td> <td></td>			В	3.00	-	3.50		0.06		7.51	0.11		
WS 109 4 B 0.70 - 0.90 0.08 0.08 7.30 0.05 WS 111 5 L 1.20 2.00 0.27 0.05 7.28 0.12 Image: Constraint of the second		16	D	4.00	-	4.45	0.31			7.82	0.14		
WS111 5 L 1.20 2.00 0.27 0.05 7.28 0.12 Image: Construct of the second se	BH107	12	U		-	4.45		0.05		7.47	0.14		
Image: Sector (Sector) Image: Sector) Image: Sector (Sector)	WS109	4	В	0.70	-	0.90	0.08	0.08		7.30	0.05		
Image: Second As Remarks Key Reported As Image: Second (Second) Image: Second (Second)	WS111	5	L	1.20	-	2.00	0.27	0.05		7.28	0.12		
Image: Second					-								
Image: Subject of the second					-								
Image: Solution of the second secon													
Image: Second Astrong Second													
Image: Second and Sec			-										
Image: Second													
Image: Strate Sulphate % SO ₄ Acid Soluble Sulphate % SO ₄ Agueous Extract Sulphate % SO ₄ Agueous Extract Sulphate % SO ₄ Magnesium g/l SO ₄ Chloride Present Magnesium g/l SO ₄ Test Operator Checked and Authorised by Magnesium g/l SO ₄													
Image: Second Astrong Support Remarks Key Reported As Key Reported As Key Remarks Acid Soluble Sulphate % SO4 Aqueous Extract Sulphate g/l SO4 Magnesium g/l SO4 Nitrate NO3 mg/l				-									
Image: Second second													
Image: Second second					-								
Image: Second second					-								
Image: Second second					-								
Image: Second second					-								
Image: Second second					-								
Image: Second					-								
Image: Second second					-								
Image: Second state of the second s					-								
Image: Second second													
Image: Second system Image: Se					-								
Image: Second second					-								
Image: Second second		<u> </u>					<u> </u>	}	<u> </u>		ļ	╂───┤	
Key Reported As Key Reported As Acid Soluble Sulphate % SO ₄ Aqueous Extract Sulphate % SO ₄ Aqueous Extract Sulphate g/l SO ₄ Chloride Content (Semi) mg Cl/l PH Value @ 25° Total Sulphur % S Magnesium g/l SO ₄ Nitrate NO ₃ mg/l		<u> </u>	+				<u> </u>	}	<u> </u>		ļ	╂───┤	
Key Reported As Remarks Acid Soluble Sulphate % SO4 NCP = No Chloride Present Aqueous Extract Sulphate g/l SO4 NCP = No Chloride Present Chloride Content (Semi) mg Cl/l PH Value @ 25° Total Sulphur % S Magnesium g/l SO4 Nitrate NO3 mg/l Ben Sharp Een Sharp							<u> </u>						
Key Reported As Acid Soluble Sulphate % SO ₄ Aqueous Extract Sulphate g/l SO ₄ Chloride Content (Semi) mg Cl/l PH Value @ 25° Total Sulphur % S Magnesium g/l SO ₄ Nitrate NO ₃ mg/l													
Key Reported As Remarks Acid Soluble Sulphate % SO ₄ NCP = No Chloride Present Aqueous Extract Sulphate g/l SO ₄ NCP = No Chloride Present Chloride Content (Semi) mg Cl/l PH Value @ 25° Total Sulphur % S Magnesium g/l SO ₄ Nitrate NO ₃ mg/l Ben Sharp													
Acid Soluble Sulphate % SO ₄ Aqueous Extract Sulphate g/l SO ₄ Chloride Content (Semi) mg Cl/l PH Value @ 25° Total Sulphur % S Magnesium g/l SO ₄ Nitrate NO ₃ mg/l	K		Banga	ted Ac	-				Ļ				
Aqueous Extract Sulphate g/l SO ₄ Chloride Content (Semi) mg Cl/l PH Value @ 25° Total Sulphur % S Magnesium g/l SO ₄ Nitrate NO ₃ mg/l			1		7						t		
Chloride Content (Semi) mg Cl/l PH Value @ 25° Total Sulphur % S Magnesium g/l SO ₄ Nitrate NO ₃ mg/l								N		nonue Prese	51 IL		
PH Value @ 25° Total Sulphur % S Magnesium g/l SO ₄ Nitrate NO ₃ mg/l Test Operator Checked and Authorised by Ben Sharp													
Total Sulphur % S Magnesium g/l SO ₄ Nitrate NO ₃ mg/l Test Operator Checked and Authorised by Ben Sharp													
Magnesium g/l SO ₄ Nitrate NO ₃ mg/l Test Operator Checked and Authorised by Ben Sharp													
Nitrate NO ₃ mg/l Test Operator Checked and Authorised by Ben Sharp		· · · · · · · · · · · · · · · · · · ·											
Test Operator Checked and Authorised by Ben Sharp					-								
Ben Sharp	Nitrate NO ₃ mg/l												
Darren Bourne Date 17/09/2018	Test Operato	est Operator Checked and Authorised by											
	Darren Bourr	ne	Date		17/09	/2018	Ben	эпагр	G	\sim			


CCTI	ONE DIMENSIONAL CONSOLIDATION TEST	Contract Number	40565
GJIL	BS1377:Part 5:1990, clause 3	Borehole/Trialpit No.	Bh103
Site Name	Epsom Hospital- Main Hospital site	Sample No.	8
Soil Description	Dark grey silty stiff CLAY	Depth Top (m)	4.00
	Dark grey silly suit CLAT	Depth Base (m)	4.45
Lab Temperature	20°c	Sample Location	Тор
Remarks	Cv Calculated Using T90	Sample Type	U

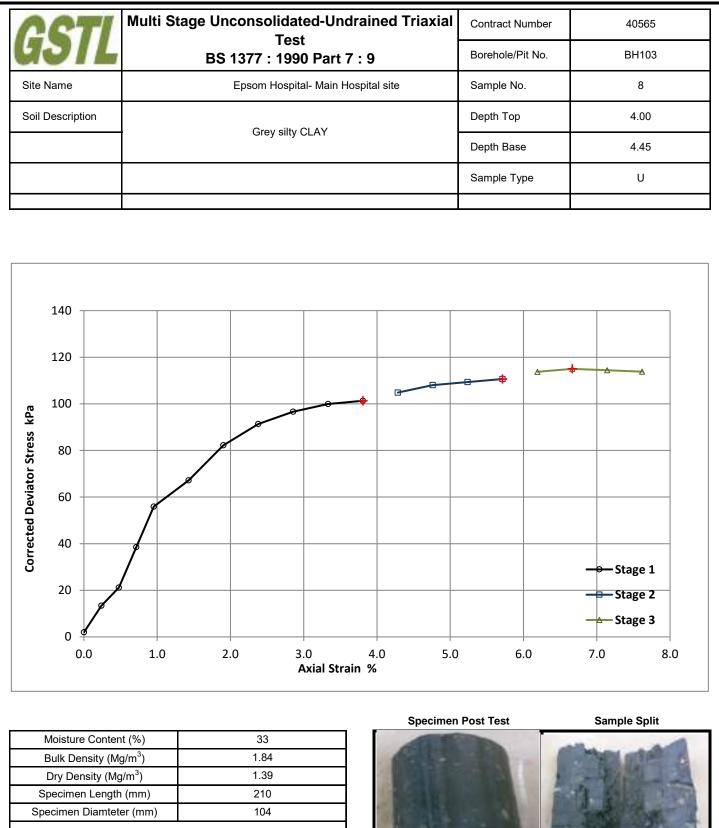
Initial Sample Condit	tions	Pres	sure R	ange	Mv m2/MN	Cv m2/yr	Press	sure Range	Mv m2/MN	Cv m2/yr
Moisture Content (%)	25	0	-	100	0.024	31		-		
Bulk Density (Mg/m3)	1.92	100	-	200	0.11	8.9		-		
Dry Density (Mg/m3)	1.53	200	-	400	0.12	12		-		
Voids Ratio	0.7295	400	-	800	0.090	6.9		-		
Degree of saturation	90.9	800	-	100	0.06	4.3		-		
Height (mm)	19.82		-					-		
Diameter (mm)	75.01		-					-		
Particle Density (Mg/m3)	2.65		-					-		

LG Approved 14/09/2018 Ben Sharp	Operators	Checked	13/09/2018	Richard John	ø	
2788	LG	Approved	14/09/2018	Ben Sharp		

CCTI	ONE DIMENSIONAL CONSOLIDATION TEST	Contract Number	40564
GJIL	BS1377:Part 5:1990, clause 3	Borehole/Trialpit No.	Bh107
Site Name	Epsom Hospital- Main Hospital site	Sample No.	12
Soil Description	Grevish brown silty stiff CLAY	Depth Top (m)	4.00
		Depth Base (m)	4.45
Lab Temperature	20°c	Sample Location	Тор
Remarks	Cv Calculated Using T90	Sample Type	U

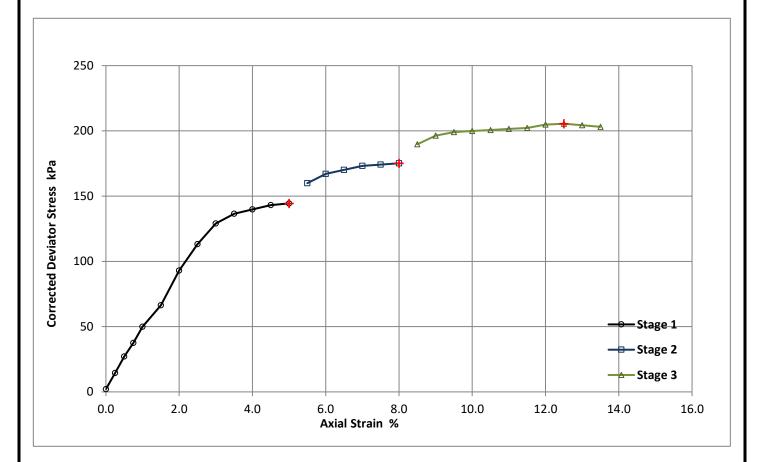


Initial Samp	le Conditio	ns	Pres	sure F	lange	Mv m2/MN	Cv m2/yr	Pres	sure Ra	inge	Mv m2/MN	Cv m2/yr
Moisture Content (%)	19	0	-	100	0.2	18		-			
Bulk Density (Mg/m3	3)	2.06	100	-	200	0.15	4.6		-			
Dry Density (Mg/m3))	1.73	200	-	400	0.14	4.1		-			
Voids Ratio		0.5312	400	-	800	0.088	3.1		-			
Degree of saturation		94.3	800	-	100	0.043	2.1		-			
Height (mm)		19.65		-					-			
Diameter (mm)		74.99		-					-			
Particle Density (Mg	/m3)	2.65		-					-			
		•	•	•					•		-	
Operators	Che	ecked	13/09	9/2018		Richard J	ohn	1	N			Â


Operators	Checked	13/09/2018	Richard John	øC	
LG	Approved	14/09/2018	Ben Sharp		
					2788

0	CT	Multi	Stage U	nconsolida Tes		ained Tria	ixial	Contract N	umber	40565	
Site Name			BS 1377 : 1990 Part 7 : 9					Borehole/P	it No.	BH103	
Site	Name			Epsom Hospit	tal- Main Hosp	oital site		Sample No		14	
Soil I	Description			Brown oilt				Depth Top		6.50	
				Brown silty	OLAT			Depth Base)	6.95	
								Sample Ty	be	U	
	160										
	140								A		
	120			, <u> </u>		}					
Ра	120		/								
Corrected Deviator Stress kPa	100										
or Str	80		/								
eviato											
ted D	60	1									
orrec	40										
Ũ		/									
	20									Stage 2	
	0										
	0.0	1.	0 :	2.0 3	3.0 Axial Strain	4.0 %	5.0	6	.0	7.0 8.	.0

29					
	1.87				
	1.45				
	210				
	104				
100	125	150			
133	138	142			
66	69	71			
4.3	5.7	6.7			
	Compound				
R	ubber/0.3m	m			
	3.00				
	133 66 4.3	1.87 1.45 210 104 100 125 133 66 69 4.3 5.7 Compound Rubber/0.3m			


Checked	13/09/2018	Ben Sharp		
Approved	14/09/2018	Paul Evans	PP SIMS	UKAS
				273a

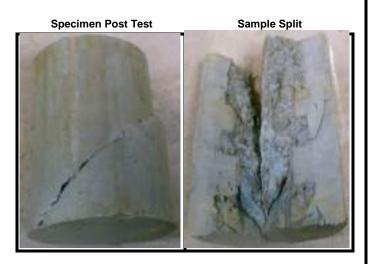
Specimen Diamteter (mm)		104	
Cell Pressures (kPa)	100	125	150
Deviator Stress (kPa)	101	111	115
Undrained Shear Strength (kPa)	51	55	58
Failure Strain (%)	3.8	5.7	6.7
Mode Of Failure		Compound	
Mrmbrane Used/Thickness	R	ubber/0.3m	m
Rate of Strain (%/min)		3.00	

Checked	13/09/2018	Ben Sharp	25	
Approved	14/09/2018	Paul Evans	8PP Soms	
				2733

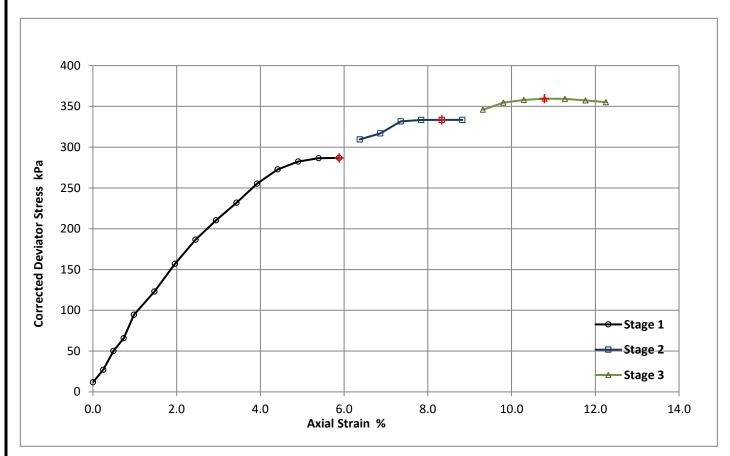
CCTI	Multi Stage Unconsolidated-Undrained Triaxial Test	Contract Number	40564
USIL	BS 1377 : 1990 Part 7 : 9	Borehole/Pit No.	BH105
Site Name	Epsom Hospital- Main Hospital site	Sample No.	
Soil Description	Drown/grov.condu.citty CLAY	Depth Top	5.00
	Brown/grey sandy silty CLAY.	Depth Base	5.45
		Sample Type	U

Moisture Content (%)		27	
Bulk Density (Mg/m ³)		2.02	
Dry Density (Mg/m ³)		1.59	
Specimen Length (mm)		200	
Specimen Diamteter (mm)		100	
Cell Pressures (kPa)	100	150	200
Deviator Stress (kPa)	144	175	205
Undrained Shear Strength (kPa)	72	88	103
Failure Strain (%)	5.0	8.0	13
Mode Of Failure		Compound	
Mrmbrane Used/Thickness	R	ubber/0.3m	m
Rate of Strain (%/min)		3.00	
Deviator Stress (kPa) Undrained Shear Strength (kPa) Failure Strain (%) Mode Of Failure Mrmbrane Used/Thickness	144 72 5.0	175 88 8.0 Compound	205 103 13

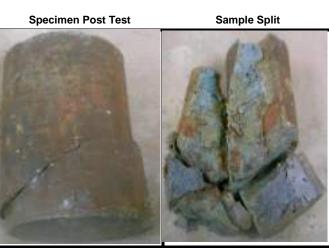
Specimen Post Test


Sample Split

Checked	16/09/2018	Ben Sharp	200	
Approved	17/09/2018	Paul Evans	\$PP SIMS	UKAS
				kk ^e ć

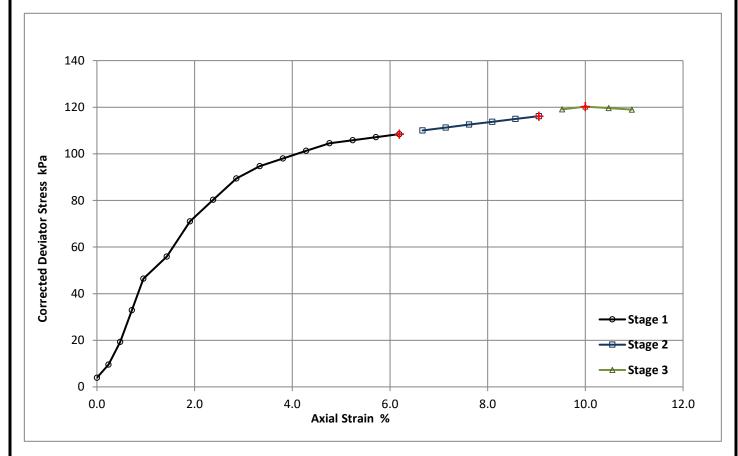

2	CTI	Multi Sta	age Uncons	solidated-U Test	ndrained	Triaxial	Contract Numb	er	40564
	SIL		BS 1377 : 1990 Part 7 : 9).	BH106
BS 1377 : 1990 Part 7 : 9 Site Name Epsom Hospital- Main Hospital site Soil Description Brown/grey silty CLAY.		pital site		Sample No.					
Soil	Description		Brow		v		Depth Top		5.00
]	BIOW	ni/grey sity CLA	1.		Depth Base		5.45
							Sample Type		U
	140								
	120						+ +	Δ	•
					• •	†			
	100			1					
CON ECIEU DEVISION DU ESS NES	80				_				
5									
בלום	60								
	40								
	40	1							- Stage 1
	20	<u>/</u>					_		-Stage 2
	1								Stage 3
	0								1

Moisture Content (%)		31	
Bulk Density (Mg/m ³)		1.90	
Dry Density (Mg/m ³)		1.45	
Specimen Length (mm)		200	
Specimen Diamteter (mm)		103	
Cell Pressures (kPa)	100	150	200
Deviator Stress (kPa)	115	121	122
Undrained Shear Strength (kPa)	58	61	61
Failure Strain (%)	5.0 6.5 7.0		7.0
Mode Of Failure	Compound		
Mrmbrane Used/Thickness	Rubber/0.3mm		
Rate of Strain (%/min)		3.00	

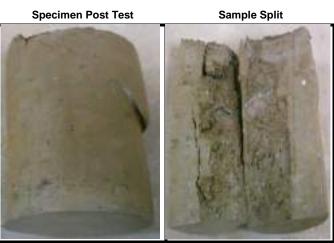


Checked	16/09/2018	Ben Sharp	255	
Approved	17/09/2018	Paul Evans	PP SIMS	UKAS
				27sta

CCTI	Multi Stage Unconsolidated-Undrained Triaxial Test		40564
GOIL		Borehole/Pit No.	BH107
Site Name	Epsom Hospital- Main Hospital site	Sample No.	
Soil Description		Depth Top	12.50
	Brown/grey sandy silty CLAY.	Depth Base	12.95
		Sample Type	U



Moisture Content (%)		14	
Bulk Density (Mg/m ³)		2.11	
Dry Density (Mg/m ³)		1.85	
Specimen Length (mm)		204	
Specimen Diamteter (mm)		104	
Cell Pressures (kPa)	250	300	350
Deviator Stress (kPa)	287	333	359
Undrained Shear Strength (kPa)	143	167	180
Failure Strain (%)	5.9	8.3	10.78
Mode Of Failure	Compound		
Mrmbrane Used/Thickness	Rubber/0.3mm		
Rate of Strain (%/min)		3.00	



Checked	16/09/2018	Ben Sharp	235	
Approved	17/09/2018	Paul Evans	PP Games	
				2733

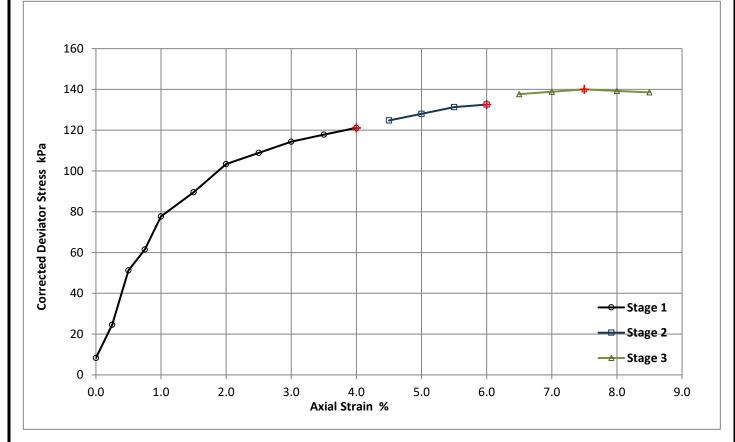
CCTI	Multi Stage Unconsolidated-Undrained Triaxial Test	Contract Number	40564
GOIL	BS 1377 : 1990 Part 7 : 9		BH107
Site Name	Epsom Hospital- Main Hospital site	Sample No.	
Soil Description		Depth Top	4.00
	Brown/grey silty CLAY.	Depth Base	4.45
		Sample Type	U

1		
	28	
	2.01	
	1.58	
	210	
	104	
100	125	150
108	116	120
54	58	60
6.2 9.0 10		10
Compound		
Rubber/0.3mm		
	3.00	
	108 54 6.2	2.01 1.58 210 104 100 125 108 116 54 58 6.2 9.0 Compound Rubber/0.3m

Checked	16/09/2018	Ben Sharp	25	
Approved	17/09/2018	Paul Evans	8PP Grans	UKAS
				2238

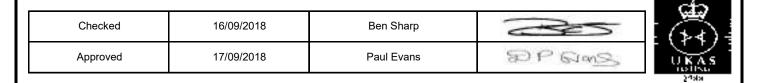
1	CTI	Multi Stage Unconsolidated-Undrained Triaxia Test	Contract Number	40564
	SIL	BS 1377 : 1990 Part 7 : 9	Borehole/Pit No.	BH107
ite	Name	Epsom Hospital- Main Hospital site	Sample No.	
i lioi	Description	Brown/grey silty CLAY.	Depth Top	6.50
		Diowil/grey silty CLAT.	Depth Base	6.95
			Sample Type	U
	160			
	100			
	140			
	120	^		
2	100	1 Arristanti I		
261 523	100			
2	80			
5	60	q		
CONTECLED DEVIATOR JUESS NEA		¢		
5	40			_ ← Stage 1
	20			
	0 🍄 0.0	2.0 4.0 6.0	8.0 10	0.0 12.0

Moisture Content (%)		26	
Bulk Density (Mg/m ³)		1.99	
Dry Density (Mg/m ³)		1.58	
Specimen Length (mm)		201	
Specimen Diamteter (mm)		102	
Cell Pressures (kPa)	100	150	200
Deviator Stress (kPa)	124	141	148
Undrained Shear Strength (kPa)	62	70	74
Failure Strain (%)	4.5 6.5 8.96		8.96
Mode Of Failure	Compound		
Mrmbrane Used/Thickness	Rubber/0.3mm		
Rate of Strain (%/min)	3.00		


Specimen Post Test

Sample Split

				Cito -
Checked	16/09/2018	Ben Sharp	25	
Approved	17/09/2018	Paul Evans	8P Sans	UKAS
				2733


Multi Stage Unconsolidated-Undrained Triaxial Test	Contract Number	40564	
GOIL	BS 1377 : 1990 Part 7 : 9	Borehole/Pit No.	BH107
Site Name	Epsom Hospital- Main Hospital site	Sample No.	
Soil Description	Description Brown/grey silty CLAY.	Depth Top	9.50
		Depth Base	9.95
		Sample Type	U

31		
1.99		
1.53		
200		
101		
175	225	275
121	133	140
61	66	70
4.0	6.0	7.50
Compound		
Rubber/0.3mm		
3.00		
	121 61 4.0	1.99 1.53 200 101 175 225 121 133 61 66 4.0 Compound Rubber/0.3m

Sample Split

Specimen Post Test

Epsom Hospital - Main Hospital Site

APPENDIX G - Geo-Environmental Laboratory Data

Ian Parsons Arcadis Consulting (UK) Ltd 5th Floor The Pithay Bristol BS1 2NL

t: 01173721360

e: ian.parsons@arcadis.com

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

Analytical Report Number : 18-97270-B

Replaces Analytical Report Number : 18-97270, issue no. 2

Project / Site name:	Epsom Hospital Main Hospital Site	Samples received on:	21/08/2018
Your job number:	10020221	Samples instructed on:	21/08/2018
Your order number:		Analysis completed by:	10/09/2018
Report Issue Number:	3	Report issued on:	13/09/2018
Samples Analysed:	4 soil samples		

Signed:

Jordan Hill Reporting Manager For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils	 4 weeks from reporting
leachates	- 2 weeks from reporting
waters	- 2 weeks from reporting
asbestos	- 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Project / Site name: Epsom Hospital Main Hospital Site

Lab Sample Number		1028128	1028129	1028130	1028131			
Sample Reference				WS106	WS106	WS107	WS107	
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	
Depth (m)				0.30	0.70	0.30	1.20	
Date Sampled		15/08/2018	15/08/2018	15/08/2018	15/08/2018			
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	
			A					
And that a Design of the	-	Limit of detection	Accreditation Status					
Analytical Parameter	Units	ie mit	creditat Status					
(Soil Analysis)	5	tio of	us					
		-	о Р					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	
Moisture Content	%	N/A	NONE	8.6	3.8	7.4	20	
Total mass of sample received	kg	0.001	NONE	0.38	0.42	0.39	0.39	
	-		100 17005	a				
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	Chrysotile	-	-	-	
Asbestos in Soil	Туре	N/A	ISO 17025	Detected	Not-detected	Not-detected	Not-detected	
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	< 0.001	_	-	-	
Asbestos Quantification Total	%	0.001	ISO 17025	< 0.001	-	-	-	
							•	
General Inorganics	_	_	_	_	_	_	_	
pH - Automated	pH Units	N/A	MCERTS	7.5	7.9	7.5	7.6	
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	
Free Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	
Water Soluble SO4 16hr extraction (2:1 Leachate								
Equivalent)	g/l	0.00125	MCERTS	0.024	0.012	0.032	0.20	
Fraction Organic Carbon (FOC)	N/A	0.001	NONE	-	-	-	0.0031	
Total Phenols					1		1	
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	
Speciated PAHs	-							
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	
Phenanthrene	mg/kg	0.05	MCERTS	0.34	< 0.05	< 0.05	< 0.05	
Anthracene	mg/kg	0.05	MCERTS	0.12	< 0.05	< 0.05	< 0.05	
Fluoranthene	mg/kg	0.05	MCERTS	1.0	< 0.05	< 0.05	< 0.05	
Pyrene	mg/kg	0.05	MCERTS	0.90	< 0.05	< 0.05	< 0.05	
Benzo(a)anthracene	mg/kg	0.05	MCERTS	0.53	< 0.05	< 0.05	< 0.05	
Chrysene	mg/kg	0.05	MCERTS	0.59	< 0.05	< 0.05	< 0.05	
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	0.91	< 0.05	< 0.05	< 0.05	
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	0.35	< 0.05	< 0.05	< 0.05	
Benzo(a)pyrene	mg/kg	0.05	MCERTS	0.68	< 0.05	< 0.05	< 0.05	
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS		< 0.05	< 0.05	< 0.05	
Dibenz(a,h)anthracene Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05 0.45	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	
венго(уп)регунене	mg/kg	0.05	MCERTS	0.45	< 0.05	< 0.05	< 0.05	
Total PAH								
Speciated Total EPA-16 PAHs	m = //	0.8	MCERTS	6.29	< 0.80	< 0.80	< 0.80	
	mg/kg	0.0	PICERIS	0.29	< 0.00	< 0.00	< 0.00	
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	12	11	11	9.0	
Boron (water soluble)	mg/kg	0.2	MCERTS	0.9	0.5	1.0	1.0	
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0	
Chromium (agua regia extractable)	mg/kg	1	MCERTS	27	26	23	44	
Copper (aqua regia extractable)	mg/kg	1	MCERTS	30	12	23	44 42	
Lead (aqua regia extractable)	mg/kg	1	MCERTS	120	30	44	23	
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	19	17	15	27	
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	110	39	63	64	
בוווכ (מקמם וכשום באנומנומטול)	пц/ку	1 I	PICERTS	110	JJ	05	07	

Project / Site name: Epsom Hospital Main Hospital Site

Lab Sample Number	ab Sample Number					1028130	1028131	
Sample Reference				WS106	WS106	WS107	WS107	
Sample Number	nple Number					None Supplied	None Supplied	
Depth (m)	pth (m)					0.30	1.20	
Date Sampled	15/08/2018	15/08/2018	15/08/2018	15/08/2018				
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					

Petroleum Hydrocarbons

TPH6 - Aliphatic (C6 - C8)	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	
TPH6 - Aliphatic (C8 - C10)	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	
TPH6 - Aliphatic (C10 - C12)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	
TPH6 - Aliphatic (C12 - C16)	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	
TPH6 - Aliphatic (C16 - C21)	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	
TPH6 - Aliphatic (C21 - C35)	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	
TPH6 - Aliphatic (C6 - C35)	mg/kg	10	NONE	< 10	< 10	< 10	< 10	
TPH6 - Aromatic (C6 - C8)	mg/kg	0.001	NONE	< 0.001	< 0.001	< 0.001	< 0.001	
TPH6 - Aromatic (C8 - C10)	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	
TPH6 - Aromatic (C10 - C12)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	
TPH6 - Aromatic (C12 - C16)	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	
TPH6 - Aromatic (C16 - C21)	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	
TPH6 - Aromatic (C21 - C35)	mg/kg	10	MCERTS	21	< 10	< 10	< 10	
TPH6 - Aromatic (C6 - C35)	mg/kg	10	NONE	21	< 10	< 10	< 10	

 Analytical Report Number:
 18-97270
 B

 Project / Site name:
 Epsom Hospital Main Hospital Site

 Your Order No:

Certificate of Analysis - Asbestos Quantification

Methods:

Qualitative Analysis

The samples were analysed qualitatively for asbestos by polarising light and dispersion staining as described by the Health and Safety Executive in HSG 248.

Quantitative Analysis

The analysis was carried out using our documented in-house method A006 based on HSE Contract Research Report No: 83/1996: Development and Validation of an analytical method to determine the amount of asbestos in soils and loose aggregates (Davies et al, 1996) and HSG 248. Our method includes initial examination of the entire representative sample, then fractionation and detailed analysis of each fraction, with quantification by hand picking and weighing.

The limit of detection (reporting limit) of this method is 0.001 %.

The method has been validated using samples of at least 100 g, results for samples smaller than this should be interpreted with caution.

Sample Number	Sample ID	Sample Depth (m)	Sample Weight (g)	Asbestos Containing Material Types Detected (ACM)	PLM Results	Asbestos by hand picking/weighing (%)	Total % Asbestos in Sample
1028128	WS106	0.30	110	Loose Fibres	Chrysotile	< 0.001	< 0.001

Both Qualitative and Quantitative Analyses are UKAS accredited.

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

Project / Site name: Epsom Hospital Main Hospital Site

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1028128	WS106	None Supplied	0.30	Brown loam and sand with gravel.
1028129	WS106	None Supplied	0.70	Brown sand with gravel.
1028130	WS107	None Supplied	0.30	Brown loam and sand.
1028131	WS107	None Supplied	1.20	Grey clay with vegetation.

Project / Site name: Epsom Hospital Main Hospital Site

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

				1	Γ
Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Asbestos Quantification - Gravimetric	Asbestos quantification by gravimetric method - in house method based on references.	HSE Report No: 83/1996, HSG 248, HSG 264 & SCA Blue Book (draft).	A006-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
Fraction of Organic Carbon in soil	Determination of fraction of organic carbon in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L009-PL	D	NONE
Free cyanide in soil	Determination of free cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	w	MCERTS
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	w	MCERTS
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically.	In-house method based on BS1377 Part 2, 1990, Chemical and Electrochemical Tests	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L099-PL	D	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP- OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests, 2:1 water:soil extraction, analysis by ICP- OES.	L038-PL	D	MCERTS
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	w	MCERTS
TPH6 (Soil)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method	L076-PL	D	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland. Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report are representative of the samples submitted for analysis.

Ian Parsons Arcadis Consulting (UK) Ltd 5th Floor The Pithay Bristol BS1 2NL

t: 01173721360

e: ian.parsons@arcadis.com

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

Analytical Report Number : 18-97314-B

Replaces Analytical Report Number : 18-97314, issue no. 3

Project / Site name:	Epsom Hospital Main Hospital Site	Samples received on:	21/08/2018
Your job number:	10020221	Samples instructed on:	22/08/2018
Your order number:		Analysis completed by:	10/09/2018
Report Issue Number:	4	Report issued on:	13/09/2018
Samples Analysed:	9 soil samples		

Signed:

Jordan Hill Reporting Manager For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils	 4 weeks from reporting
leachates	- 2 weeks from reporting
waters	- 2 weeks from reporting
asbestos	- 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Project / Site name: Epsom Hospital Main Hospital Site

Lab Sample Number				1028359	1028365	1028366	1028367	1028368
Sample Reference				BH103	WS108	WS109	WS109	WS110
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)		0.50	0.20	0.30	0.70	0.70		
Date Sampled		20/08/2018	16/08/2018	17/08/2018	17/08/2018	17/08/2018		
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
		de L	Acci					
Analytical Parameter	Units	te ini	ed of					
(Soil Analysis)	its	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	37	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	13	6.4	11	12	13
Total mass of sample received	ka	0.001	NONE	1.1	0.40	0.45	0.37	0.48
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	Amosite	-	-	-	-
Asbestos in Soil	Туре	N/A	ISO 17025	Detected	Not-detected	Not-detected	Not-detected	Not-detected
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	< 0.001	-	-	-	-
Asbestos Quantification Total	%	0.001	ISO 17025	< 0.001	-	-	-	-
	-							
General Inorganics	1		1				1	
pH - Automated	pH Units	N/A	MCERTS	8.8	7.7	8.5	8.0	8.1
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	6	< 1	< 1
Free Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	< 1
Water Soluble SO4 16hr extraction (2:1 Leachate		0.00105		0.050	0.022	0.12	0.050	0.000
Equivalent)	g/l	0.00125	MCERTS	0.050	0.022	0.13	0.059	0.082
Fraction Organic Carbon (FOC)	N/A	0.001	NONE	-	-	-	-	0.014
Total Phenols								
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
	ilig/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	0.50	< 0.05	1.6	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	0.33	< 0.05	9.1	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	10	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	18	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	2.6	0.32	130	0.68	0.63
Anthracene	mg/kg	0.05	MCERTS	0.63	< 0.05	37	0.38	0.21
Fluoranthene	mg/kg	0.05	MCERTS	7.4	0.72	190	2.3	2.0
Pyrene	mg/kg	0.05	MCERTS	6.2	0.58	160	1.7	1.8
Benzo(a)anthracene	mg/kg	0.05	MCERTS	4.2	0.27	110	1.5	1.4
Chrysene	mg/kg	0.05	MCERTS	4.0	0.39	69	1.1	1.1
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	6.4	0.50	160	1.6	1.8
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	1.5	0.28	36	0.62	0.64
Benzo(a)pyrene	mg/kg	0.05	MCERTS	4.3	0.47	130	1.2	1.4
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	2.4	0.23	59	0.57	0.70
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	0.78	< 0.05	19	0.25	0.23
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	2.7	0.26	70	0.66	0.81
Total PAH						10.5.5		
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	43.9	4.02	1200	12.6	12.7
Hoover Motols / Motolloide								
Heavy Metals / Metalloids Arsenic (agua regia extractable)	mg/kg	1	MCERTS	19	10	13	9.1	13
Boron (water soluble)		0.2	MCERTS	0.4	0.6	0.5	1.9	2.6
Cadmium (aqua regia extractable)	mg/kg	0.2		< 0.2	< 0.2	0.5	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg mg/kg	0.2 4	MCERTS MCERTS	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0
Chromium (nexavalent) Chromium (aqua regia extractable)	mg/kg	4	MCERTS	23	27	16	28	28
Copper (aqua regia extractable)	mg/kg mg/kg	1	MCERTS	76	34	35	28	38
Lead (aqua regia extractable)		1	MCERTS	320	160	280	100	38
Mercury (aqua regia extractable)	mg/kg			1.0	< 0.3	< 0.3		
	mg/kg	0.3	MCERTS				< 0.3	< 0.3
Nickel (aqua regia extractable) Selenium (aqua regia extractable)	mg/kg	1	MCERTS MCERTS	30	15	13	18	18
	mg/kg	1		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	140	63	130	51	130

TPH-CWG - Aromatic >EC16 - EC21

TPH-CWG - Aromatic >EC21 - EC35

TPH-CWG - Aromatic (EC5 - EC35)

Project / Site name: Epsom Hospital Main Hospital Site

Lab Sample Number				1028359	1028365	1028366	1028367	1028368
Sample Reference	BH103	WS108	WS109	WS109	WS110			
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.50	0.20	0.30	0.70	0.70
Date Sampled				20/08/2018	16/08/2018	17/08/2018	17/08/2018	17/08/2018
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
		de	Accreditation Status					
Analytical Parameter	Units	Limit of detection	Sta					
(Soil Analysis)	its	tio	tus tat					
			ion i					
Monoaromatics								
Benzene	ug/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
Toluene	µg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
Ethylbenzene	µg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
p & m-xylene	µg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
o-xylene	µg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
Petroleum Hydrocarbons								
TPH6 - Aliphatic (C6 - C8)	mg/kg	0.001	MCERTS	-	< 0.001		10.001	-
				-		-	< 0.001	-
TPH6 - Aliphatic (C8 - C10)	mg/kg	0.001	MCERTS		< 0.001		< 0.001	
TPH6 - Aliphatic (C10 - C12)	mg/kg	1	MCERTS MCERTS	-	< 1.0	-	< 1.0	-
TPH6 - Aliphatic (C12 - C16)	mg/kg	2		-	< 2.0	-	< 2.0	-
TPH6 - Aliphatic (C16 - C21)	mg/kg	8	MCERTS		< 8.0	-	< 8.0	-
TPH6 - Aliphatic (C21 - C35)	mg/kg	8 10	MCERTS NONE	-	< 8.0 < 10	-	< 8.0 < 10	-
TPH6 - Aliphatic (C6 - C35)	mg/kg	10	NONE	-	< 10	-	< 10	-
TPH6 - Aromatic (C6 - C8)	mg/kg	0.001	NONE	-	< 0.001	-	< 0.001	-
TPH6 - Aromatic (C8 - C10)	mg/kg	0.001	MCERTS	-	< 0.001	-	< 0.001	-
TPH6 - Aromatic (C10 - C12)	mg/kg	1	MCERTS	-	< 1.0	-	< 1.0	-
TPH6 - Aromatic (C12 - C16)	mg/kg	2	MCERTS	-	< 2.0	-	< 2.0	-
TPH6 - Aromatic (C16 - C21)	mg/kg	10	MCERTS	-	< 10	-	< 10	-
TPH6 - Aromatic (C21 - C35)	mg/kg	10	MCERTS	-	21	-	21	-
TPH6 - Aromatic (C6 - C35)	mg/kg	10	NONE	-	21	-	21	-
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	-	< 0.001	-	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001		< 0.001	-	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	-	< 0.001	-	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	-	48	_	< 2.0
TPH-CWG - Aliphatic >EC12 - EC10 TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	-	140	-	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0		420	_	< 8.0
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	-	610	-	< 10
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	-	< 0.001	-	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	-	< 0.001	-	< 0.001
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	-	< 0.001	-	< 0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	-	26	-	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	-	210	-	< 2.0
TDH_CWC - Aromatic > EC16 - EC21	ma/ka	10	MCEDTC	10		1000	_	< 10

1900

5300

7500

10

10

10

mg/kg

mg/kg

mg/kg

MCERTS

MCERTS

MCERTS

19

44

64

< 10

17

24

Project / Site name: Epsom Hospital Main Hospital Site

Lab Sample Number				1028369	1028370	1028371	1028372	
Sample Reference				WS111	WS111	WS112	WS112	
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	
Depth (m)				0.20	0.70	0.40	1.20	
Date Sampled				17/08/2018	17/08/2018	17/08/2018	17/08/2018	
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	
			A					
Angle digal Developmentary	-	Limit of detection	Accreditation Status					
Analytical Parameter	Units	ie mit	creditat Status					
(Soil Analysis)	ioi	ଟ୍ରି କ	us					
		-	9					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	
Moisture Content	%	N/A	NONE	13	11	6.5	11	
Total mass of sample received	kg	0.001	NONE	0.36	0.42	0.40	0.47	
k					•			
Achartas in Sail Screen / Identification Name	Tuno	N/A	ISO 17025					
Asbestos in Soil Screen / Identification Name	Туре	N/A	150 17025	-	-	-	-	
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	-	-	-	- 1	
Asbestos Quantification Total	%	0.001	ISO 17025	-	-	-	-	
General Inorganics					1			
pH - Automated	pH Units	N/A	MCERTS	8.0	8.1	8.5	7.4	
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	
Free Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	
Water Soluble SO4 16hr extraction (2:1 Leachate	- //	0.00125	MOEDTO	0.022	0.012	0.050	0.020	
Equivalent) Fraction Organic Carbon (FOC)	g/l N/A	0.00125	MCERTS	0.022	0.013	0.056	0.038	
	N/A	0.001	NONE	-	-	-	-	
Total Phenols								
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	
	iiig/kg		TICERTO	< 1.0	110	< 1.0	110	
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	1.5	< 0.05	
Acenaphthylene	mg/kg	0.05	MCERTS	0.23	< 0.05	2.5	< 0.05	
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.32	< 0.05	
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	1.1	< 0.05	
Phenanthrene	mg/kg	0.05	MCERTS	0.67	0.46	12	< 0.05	
Anthracene	mg/kg	0.05	MCERTS	0.24	< 0.05	4.7	< 0.05	
Fluoranthene	mg/kg	0.05	MCERTS	2.6	0.61	30	< 0.05	
Pyrene	mg/kg	0.05	MCERTS	2.5	0.54	24	< 0.05	
Benzo(a)anthracene	mg/kg	0.05	MCERTS	1.7	0.35	23	< 0.05	
Chrysene	mg/kg	0.05	MCERTS	1.7	0.27	14	< 0.05	
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	2.9	0.40	27	< 0.05	
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	0.86	0.12	6.7	< 0.05	
Benzo(a)pyrene	mg/kg	0.05	MCERTS	2.2	0.30	20	< 0.05	
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	1.2	< 0.05	8.8	< 0.05	
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	0.35	< 0.05	3.5	< 0.05	
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	1.3	< 0.05	9.6	< 0.05	
Total PAH		0.0		10.4	2.05	100	. 0.00	
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	18.4	3.05	189	< 0.80	
Honuy Metale / Metalleita								
Heavy Metals / Metalloids Arsenic (agua regia extractable)	mg/kg	1	MCERTS	16	13	14	9.7	
Boron (water soluble)		0.2	MCERTS	1.3	0.8	0.9	0.8	
Cadmium (agua regia extractable)	mg/kg mg/kg	0.2	MCERTS	< 0.2	< 0.2	0.9	< 0.2	
Chromium (hexavalent)	mg/kg mg/kg	0.2 4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0	
Chromium (agua regia extractable)	mg/kg	1	MCERTS	23	24	22	30	
Copper (aqua regia extractable)	mg/kg	1	MCERTS	42	41	27	9.2	
Lead (aqua regia extractable)	mg/kg	1	MCERTS	300	170	190	30	
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	0.8	< 0.3	< 0.3	
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	16	16	15	17	
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	
Zinc (agua regia extractable)	mg/kg	1	MCERTS	170	59	110	49	
	1119/ Kg		TIGERT3	1/0		110		

Project / Site name: Epsom Hospital Main Hospital Site

Lab Sample Number				1028369	1028370	1028371	1028372	
Sample Reference				WS111	WS111	WS112	WS112	
Sample Number	None Supplied	None Supplied	None Supplied	None Supplied				
Depth (m)	0.20	0.70	0.40	1.20				
Date Sampled				17/08/2018	17/08/2018	17/08/2018	17/08/2018	
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	
Analytical Parameter (Soil Analysis)								
Monoaromatics								
Benzene	ug/kg	1	MCERTS	< 1.0	-	-	-	
Toluene	µg/kg	1	MCERTS	< 1.0	-	-	-	
Ethylbenzene	µg/kg	1	MCERTS	< 1.0	-	-	-	
p & m-xylene	µg/kg	1	MCERTS	< 1.0	-	-	-	
o-xylene	µg/kg	1	MCERTS	< 1.0	-	-	-	
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	< 1.0	-	-	-	

Petroleum Hydrocarbons

TPH6 - Aliphatic (C6 - C8)	mg/kg	0.001	MCERTS	-	-	< 0.001	-	
TPH6 - Aliphatic (C8 - C10)	mg/kg	0.001	MCERTS	-	-	< 0.001	-	
TPH6 - Aliphatic (C10 - C12)	mg/kg	1	MCERTS	-	-	< 1.0	-	
TPH6 - Aliphatic (C12 - C16)	mg/kg	2	MCERTS	-	-	3.1	-	
TPH6 - Aliphatic (C16 - C21)	mg/kg	8	MCERTS	-	-	8.3	-	
TPH6 - Aliphatic (C21 - C35)	mg/kg	8	MCERTS	-	-	59	-	
TPH6 - Aliphatic (C6 - C35)	mg/kg	10	NONE	-	-	70	-	
TPH6 - Aromatic (C6 - C8)	mg/kg	0.001	NONE	-	-	< 0.001	-	
TPH6 - Aromatic (C8 - C10)	mg/kg	0.001	MCERTS	-	-	< 0.001	-	
TPH6 - Aromatic (C10 - C12)	mg/kg	1	MCERTS	-	-	1.4	-	
TPH6 - Aromatic (C12 - C16)	mg/kg	2	MCERTS	-	-	16	-	
TPH6 - Aromatic (C16 - C21)	mg/kg	10	MCERTS	-	-	160	-	
TPH6 - Aromatic (C21 - C35)	mg/kg	10	MCERTS	-	-	640	-	
TPH6 - Aromatic (C6 - C35)	mg/kg	10	NONE	-	-	820	-	
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	-	-	-	
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	-	-	-	
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	-	-	-	
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	-	-	-	
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	-	-	-	
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	-	-	-	
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	-	-	-	
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	-	-	-	
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	-	-	-	
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	-	-	-	
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	-	-	-	
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	-	-	-	
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	-	-	-	
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	-	-	-	
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	34	-	-	-	
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	43	-	-	-	

 Analytical Report Number:
 18-97314
 B

 Project / Site name:
 Epsom Hospital Main Hospital Site

 Your Order No:

Certificate of Analysis - Asbestos Quantification

Methods:

Qualitative Analysis

The samples were analysed qualitatively for asbestos by polarising light and dispersion staining as described by the Health and Safety Executive in HSG 248.

Quantitative Analysis

The analysis was carried out using our documented in-house method A006 based on HSE Contract Research Report No: 83/1996: Development and Validation of an analytical method to determine the amount of asbestos in soils and loose aggregates (Davies et al, 1996) and HSG 248. Our method includes initial examination of the entire representative sample, then fractionation and detailed analysis of each fraction, with quantification by hand picking and weighing.

The limit of detection (reporting limit) of this method is 0.001 %.

The method has been validated using samples of at least 100 g, results for samples smaller than this should be interpreted with caution.

Sample Number	Sample ID	Sample Depth (m)	Sample Weight (g)	Asbestos Containing Material Types Detected (ACM)	PLM Results	Asbestos by hand picking/weighing (%)	Total % Asbestos in Sample
1028359	BH103	0.50	108	Loose Fibres	Amosite	< 0.001	< 0.001

Both Qualitative and Quantitative Analyses are UKAS accredited.

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

Project / Site name: Epsom Hospital Main Hospital Site

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1028359	BH103	None Supplied	0.50	Black loam and sand with rubble and coal.
1028365	WS108	None Supplied	0.20	Brown loam and sand with stones and vegetation.
1028366	WS109	None Supplied	0.30	Black gravely sand with brick and clinker
1028367	WS109	None Supplied	0.70	Brown clay and loam with gravel.
1028368	WS110	None Supplied	0.70	Brown clay and sand with gravel and vegetation.
1028369	WS111	None Supplied	0.20	Brown loam and sand with vegetation and gravel.
1028370	WS111	None Supplied	0.70	Brown clay and sand with gravel.
1028371	WS112	None Supplied	0.40	Brown clay and sand with rubble and brick.
1028372	WS112	None Supplied	1.20	Brown clay and sand with brick.

Project / Site name: Epsom Hospital Main Hospital Site

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Asbestos Quantification - Gravimetric	Asbestos quantification by gravimetric method - in house method based on references.	HSE Report No: 83/1996, HSG 248, HSG 264 & SCA Blue Book (draft).	A006-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC- MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
Fraction of Organic Carbon in soil	Determination of fraction of organic carbon in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L009-PL	D	NONE
Free cyanide in soil	Determination of free cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically.	In-house method based on BS1377 Part 2, 1990, Chemical and Electrochemical Tests	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L099-PL	D	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS

Project / Site name: Epsom Hospital Main Hospital Site

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	nalytical Test Name Analytical Method Description		Method number	Wet / Dry Analysis	Accreditation Status
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP- OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests, 2:1 water:soil extraction, analysis by ICP- OES.	L038-PL	D	MCERTS
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
TPH6 (Soil)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method	L076-PL	D	MCERTS
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method	L088/76-PL	W	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Ian Parsons Arcadis Consulting (UK) Ltd 5th Floor The Pithay Bristol BS1 2NL

t: 01173721360

e: ian.parsons@arcadis.com

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

Analytical Report Number : 18-97517

Replaces Analytical Report Number : 18-97517, issue no. 1

Project / Site name:	Epsom Hospital	Samples received on:	21/08/2018
Your job number:	10020221	Samples instructed on:	23/08/2018
Your order number:		Analysis completed by:	05/09/2018
Report Issue Number:	2	Report issued on:	05/09/2018
Samples Analysed:	4 soil samples		

Signed:

Jordan Hill Reporting Manager For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils	 4 weeks from reporting
leachates	- 2 weeks from reporting
waters	- 2 weeks from reporting
asbestos	- 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Analytical Report Number: 18-97517

Project / Site name: Epsom Hospital

Lab Sample Number				1029458	1029459	1029460	1029461	
Sample Reference				BH106	BH106	BH106	BH107	
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	
Depth (m)				0.25	0.60	1.10	0.50	
Date Sampled				21/08/2018	21/08/2018	21/08/2018	20/08/2018	
Time Taken				1200	1200	1200	1600	
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status	1200	1200	1200		
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	
Moisture Content	%	N/A	NONE	2.3	8.5	7.7	16	
Total mass of sample received	ka	0.001	NONE	1.3	1.1	1.3	0.93	
	Ng	0.001	HONE	1.5	1.1	1.5	0.55	
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	9.6	11.7	8.1	8.5	
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	
Free Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	
Water Soluble SO4 16hr extraction (2:1 Leachate								
Equivalent)	g/l	0.00125		0.060	0.033	0.036	0.32	
Fraction Organic Carbon (FOC)	N/A	0.001	NONE	-	0.015	-	-	
Total Phenols	-							
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	5.1	< 0.05	< 0.05	
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	14	< 0.05	< 0.05	
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	2.5	< 0.05	0.56	
Fluorene	mg/kg	0.05	MCERTS	0.23	12	0.23	0.55	
Phenanthrene	mg/kg	0.05	MCERTS	1.4	110	1.5	7.0	
Anthracene	mg/kg	0.05	MCERTS	0.28	30	0.68	2.2	
Fluoranthene	mg/kg	0.05	MCERTS	1.5	150	2.3	13	
Pyrene	mg/kg	0.05	MCERTS	1.3	120	1.8	11	
Benzo(a)anthracene	mg/kg	0.05	MCERTS	0.84	71	1.3	6.1	
Chrysene	mg/kg	0.05	MCERTS	0.90	60	1.0	5.9	
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	1.0	74	1.2	8.4	
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	0.44	32	0.82	2.8	
Benzo(a)pyrene	mg/kg	0.05	MCERTS	0.76	65	1.0	6.5	
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	28	0.44	2.7	
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	7.7	< 0.05	0.65	
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	31	0.48	3.2	
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	8.70	808	12.8	70.6	

Analytical Report Number: 18-97517

Project / Site name: Epsom Hospital

Lab Sample Number				1029458	1029459	1029460	1029461	
Sample Reference				BH106	BH106	BH106	BH107	
Sample Number	None Supplied	None Supplied	None Supplied	None Supplied				
Depth (m)				0.25	0.60	1.10	0.50	
Date Sampled				21/08/2018	21/08/2018	21/08/2018	20/08/2018	
Time Taken				1200	1200	1200	1600	
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids			=		-			
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	4.9	12	7.0	14	
Boron (water soluble)	mg/kg	0.2	MCERTS	0.5	1.6	0.7	0.7	
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0	
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	31	23	21	32	
Copper (aqua regia extractable)	mg/kg	1	MCERTS	25	22	15	42	
Lead (aqua regia extractable)	mg/kg	1	MCERTS	52	140	25	190	
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	12	17	16	23	
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	42	110	35	74	

Petroleum Hydrocarbons

TPH6 - Aliphatic (C6 - C8)	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	
TPH6 - Aliphatic (C8 - C10)	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	
TPH6 - Aliphatic (C10 - C12)	mg/kg	1	MCERTS	2.4	< 1.0	< 1.0	1.8	
TPH6 - Aliphatic (C12 - C16)	mg/kg	2	MCERTS	9.3	< 2.0	< 2.0	2.3	
TPH6 - Aliphatic (C16 - C21)	mg/kg	8	MCERTS	55	< 8.0	< 8.0	11	
TPH6 - Aliphatic (C21 - C35)	mg/kg	8	MCERTS	560	< 8.0	< 8.0	8.7	
TPH6 - Aliphatic (C6 - C35)	mg/kg	10	NONE	630	< 10	< 10	23	
TPH6 - Aromatic (C6 - C8)	mg/kg	0.001	NONE	< 0.001	< 0.001	< 0.001	< 0.001	
TPH6 - Aromatic (C8 - C10)	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	
TPH6 - Aromatic (C10 - C12)	mg/kg	1	MCERTS	< 1.0	7.4	< 1.0	< 1.0	
TPH6 - Aromatic (C12 - C16)	mg/kg	2	MCERTS	14	120	6.7	3.7	
TPH6 - Aromatic (C16 - C21)	mg/kg	10	MCERTS	93	1300	25	74	
TPH6 - Aromatic (C21 - C35)	mg/kg	10	MCERTS	1300	2300	25	110	
TPH6 - Aromatic (C6 - C35)	mg/kg	10	NONE	1400	3800	57	190	

Analytical Report Number : 18-97517

Project / Site name: Epsom Hospital

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1029458	BH106	None Supplied	0.25	Grey loam and sand with rubble.
1029459	BH106	None Supplied	0.60	Brown clay and sand with rubble.
1029460	BH106	None Supplied	1.10	Brown clay and sand with gravel.
1029461	BH107	None Supplied	0.50	Brown gravelly loam.

Analytical Report Number : 18-97517

Project / Site name: Epsom Hospital

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
Fraction of Organic Carbon in soil	Determination of fraction of organic carbon in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L009-PL	D	NONE
Free cyanide in soil	Determination of free cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	w	MCERTS
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically.	In-house method based on BS1377 Part 2, 1990, Chemical and Electrochemical Tests	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L099-PL	D	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP- OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests, 2:1 water:soil extraction, analysis by ICP- OES.	L038-PL	D	MCERTS
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
TPH6 (Soil)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method	L076-PL	D	MCERTS
	K' analysis have been carried out in our laborat				

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom. For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Ian Parsons Arcadis Consulting (UK) Ltd 5th Floor The Pithay Bristol BS1 2NL

t: 01173721360

e: ian.parsons@arcadis.com

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

Analytical Report Number : 18-97669-B

Replaces Analytical Report Number : 18-97669, issue no. 3

Project / Site name:	Epsom Hospital Main Hospital Site	Samples received on:	23/08/2018
Your job number:	10020221	Samples instructed on:	23/08/2018
Your order number:		Analysis completed by:	10/09/2018
Report Issue Number:	4	Report issued on:	13/09/2018
Samples Analysed:	3 soil samples		

Signed:

Jordan Hill Reporting Manager For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils	 4 weeks from reporting
leachates	- 2 weeks from reporting
waters	- 2 weeks from reporting
asbestos	- 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Project / Site name: Epsom Hospital Main Hospital Site

Lab Sample Number				1030521	1030522	1030523		
Sample Reference				BH105	BH105	BH105		
Sample Number				None Supplied	None Supplied	None Supplied		
Depth (m)				0.00-0.10	0.30-0.50	0.50-0.70		
Date Sampled				23/08/2018	23/08/2018	23/08/2018		
Time Taken		1500	1500	1500				
			Ac					
Analytical Parameter	C	Limit of detection	St					
(Soil Analysis)	Units	ecti	creditat Status					
(g q	Accreditation Status					
			2					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1		
Moisture Content	%	N/A	NONE	0.43	16	16		
Total mass of sample received	kg	0.001	NONE	1.1	1.0	0.80		
		r —					I	
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	-	Chrysotile	-		
Ashartas in Sail	Time	NI/A	100 17025	-	Detected	Not detected		
Asbestos in Soil Asbestos Quantification (Stage 2)	Type %	N/A 0.001	ISO 17025 ISO 17025	-		Not-detected -	 	
Asbestos Quantification (Stage 2) Asbestos Quantification Total	%	0.001	ISO 17025 ISO 17025	-	< 0.001	-	<u>├</u>	
novestos Qualitilication Toldi	70	0.001	130 17025	-	< 0.001	-	II	
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	-	7.8	7.9		
Total Cyanide	mg/kg	1	MCERTS	-	< 1	< 1	1	
Free Cyanide	mg/kg	1	MCERTS	-	< 1	< 1		
Water Soluble SO4 16hr extraction (2:1 Leachate			HOLINO					
Equivalent)	g/l	0.00125	MCERTS	-	0.48	0.15		
Total Phenois	-						-	
Total Phenols (monohydric)	mg/kg	1	MCERTS	-	< 1.0	< 1.0		
Speciated PAHs			1				 	
Naphthalene	mg/kg	0.05	MCERTS	-	< 0.05	< 0.05		
Acenaphthylene	mg/kg	0.05	MCERTS	-	0.26	< 0.05		
Acenaphthene	mg/kg	0.05	MCERTS	-	< 0.05	< 0.05		
Fluorene	mg/kg	0.05	MCERTS	-	< 0.05	< 0.05		
Phenanthrene	mg/kg	0.05	MCERTS	-	<u>1.3</u> 0.41	0.65		
Anthracene Fluoranthene	mg/kg mg/kg	0.05	MCERTS MCERTS	-	4.1	0.18		
Pyrene	mg/kg	0.05	MCERTS	-	3.3	1.8		
Benzo(a)anthracene	mg/kg	0.05	MCERTS		2.3	1.0		
Chrysene	mg/kg	0.05	MCERTS	-	2.2	1.1		
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	-	3.7	1.6		
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	-	1.2	0.55		
Benzo(a)pyrene	mg/kg	0.05	MCERTS	-	2.9	1.2		
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	-	1.5	0.73		
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	-	0.49	< 0.05		
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	-	1.7	0.85		
							•	
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	-	25.3	11.9		
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	-	21	11		
Boron (water soluble)	mg/kg	0.2	MCERTS	-	9.3	5.9		
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	-	0.6	< 0.2	ļ	
Chromium (hexavalent)	mg/kg	4	MCERTS	-	< 4.0	< 4.0	↓↓	
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	-	29	30	ļ	
Copper (aqua regia extractable)	mg/kg	1	MCERTS	-	68	36	├ ─── │	
Lead (aqua regia extractable)	mg/kg	1	MCERTS	-	450	170	├ ─── │	
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	-	0.7	0.5	╂─────┨──	
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	-	24	20	<u> </u>	
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	-	< 1.0	< 1.0		
Zinc (agua regia extractable)	mg/kg	1	MCERTS	-	380	130		

Project / Site name: Epsom Hospital Main Hospital Site

Lab Sample Number	1030521	1030522	1030523				
Sample Reference				BH105	BH105	BH105	
Sample Number				None Supplied	None Supplied	None Supplied	
Depth (m)				0.00-0.10	0.30-0.50	0.50-0.70	
Date Sampled				23/08/2018	23/08/2018	23/08/2018	
Time Taken				1500	1500	1500	
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				

Monoaromatics							
Benzene	ug/kg	1	MCERTS	-	< 1.0	-	
Toluene	µg/kg	1	MCERTS	-	< 1.0	-	
Ethylbenzene	µg/kg	1	MCERTS	-	< 1.0	-	
p & m-xylene	µg/kg	1	MCERTS	-	< 1.0	-	
o-xylene	µg/kg	1	MCERTS	-	< 1.0	-	
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	-	< 1.0	-	

Petroleum Hydrocarbons

TPH6 - Aliphatic (C6 - C8)	mg/kg	0.001	MCERTS	-	-	< 0.001	
TPH6 - Aliphatic (C8 - C10)	mg/kg	0.001	MCERTS	-	-	< 0.001	
TPH6 - Aliphatic (C10 - C12)	mg/kg	1	MCERTS	-	-	< 1.0	
TPH6 - Aliphatic (C12 - C16)	mg/kg	2	MCERTS	-	-	< 2.0	
TPH6 - Aliphatic (C16 - C21)	mg/kg	8	MCERTS	-	-	< 8.0	
TPH6 - Aliphatic (C21 - C35)	mg/kg	8	MCERTS	-	-	< 8.0	
TPH6 - Aliphatic (C6 - C35)	mg/kg	10	NONE	-	-	< 10	
TPH6 - Aromatic (C6 - C8)	mg/kg	0.001	NONE	-	-	< 0.001	
TPH6 - Aromatic (C8 - C10)	mg/kg	0.001	MCERTS	-	-	< 0.001	
TPH6 - Aromatic (C10 - C12)	mg/kg	1	MCERTS	-	-	< 1.0	
TPH6 - Aromatic (C12 - C16)	mg/kg	2	MCERTS	-	-	< 2.0	
TPH6 - Aromatic (C16 - C21)	mg/kg	10	MCERTS	-	-	< 10	
TPH6 - Aromatic (C21 - C35)	mg/kg	10	MCERTS	-	-	24	
TPH6 - Aromatic (C6 - C35)	mg/kg	10	NONE	-	-	24	
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	-	< 0.001	-	
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	-	< 0.001	-	
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	-	< 0.001	-	
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	-	< 1.0	-	
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	-	< 2.0	-	
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	-	< 8.0	-	
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	-	< 8.0	-	
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	-	< 10	-	
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	-	< 0.001	-	
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	-	< 0.001	-	
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	-	< 0.001	-	
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	-	< 1.0	-	
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	-	< 2.0	-	
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	-	18	-	
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	-	71	-	
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	-	89	-	

Miscellaneous Organics							
Coal Tar	mg/kg	10	NONE	< 10.0	-	-	

Iss No 18-97669-4B Epsom Hospital Main Hospital Site 10020221

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report are representative of the samples submitted for analysis.

Analytical Report Number: 18-97669 B Project / Site name: Epsom Hospital Main Hospital Site Your Order No:

Certificate of Analysis - Asbestos Quantification

Methods:

Qualitative Analysis

The samples were analysed qualitatively for asbestos by polarising light and dispersion staining as described by the Health and Safety Executive in HSG 248.

Quantitative Analysis

The analysis was carried out using our documented in-house method A006 based on HSE Contract Research Report No: 83/1996: Development and Validation of an analytical method to determine the amount of asbestos in soils and loose aggregates (Davies et al, 1996) and HSG 248. Our method includes initial examination of the entire representative sample, then fractionation and detailed analysis of each fraction, with quantification by hand picking and weighing.

The limit of detection (reporting limit) of this method is 0.001 %.

The method has been validated using samples of at least 100 g, results for samples smaller than this should be interpreted with caution.

Sample Number	Sample ID	Sample Depth (m)	Sample Weight (g)	Asbestos Containing Material Types Detected (ACM)	PLM Results	Asbestos by hand picking/weighing (%)	Total % Asbestos in Sample
1030522	BH105	0.30-0.50	136	Loose Fibres	Chrysotile	< 0.001	< 0.001

Both Qualitative and Quantitative Analyses are UKAS accredited.

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

Project / Site name: Epsom Hospital Main Hospital Site

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1030521	BH105	None Supplied	0.00-0.10	Black tar with gravel. **
1030522	BH105	None Supplied	0.30-0.50	Brown clay and sand with gravel.
1030523	BH105	None Supplied	0.50-0.70	Brown loam and clay with gravel.

** Non MCERTS matrix.

Project / Site name: Epsom Hospital Main Hospital Site

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Asbestos Quantification - Gravimetric	Asbestos quantification by gravimetric method - in house method based on references.	HSE Report No: 83/1996, HSG 248, HSG 264 & SCA Blue Book (draft).	A006-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC- MS.	In-house method based on USEPA8260	L073B-PL	w	MCERTS
Coal Tar in Soil	In-house method by GC-MS, by calculation of discrete polyaromatic content.	In-house method by calculation	L064-UK	D	NONE
Free cyanide in soil	Determination of free cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	w	MCERTS
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically.	In-house method based on BS1377 Part 2, 1990, Chemical and Electrochemical Tests	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	w	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L099-PL	D	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE

Project / Site name: Epsom Hospital Main Hospital Site

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP- OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests, 2:1 water:soil extraction, analysis by ICP- OES.	L038-PL	D	MCERTS
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
TPH6 (Soil)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method	L076-PL	D	MCERTS
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method	L088/76-PL	W	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom. For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland. Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Ian Parsons Arcadis Consulting (UK) Ltd 5th Floor The Pithay Bristol BS1 2NL Environmental Science

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

t: 01173721360

e: ian.parsons@arcadis.com

Analytical Report Number : 18-97864-B

Project / Site name:	Epsom Hospital - Main Hospital Site	Samples received on:	24/08/2018
Your job number:	10020221	Samples instructed on:	24/08/2018
Your order number:		Analysis completed by:	04/09/2018
Report Issue Number:	1	Report issued on:	05/09/2018
Samples Analysed:	6 water samples		

Signed:

Jordan Hill Reporting Manager For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils	- 4 weeks from reporting
leachates	- 2 weeks from reporting
waters	- 2 weeks from reporting
asbestos	- 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Project / Site name: Epsom Hospital - Main Hospital Site

Lab Sample Number				1031735	1031740	1031741	1031742	1031743
Sample Reference				BH103	WS106	WS107	BH107	BH105 (s)
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Date Sampled				23/08/2018	23/08/2018	23/08/2018	23/08/2018	23/08/2018
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
		~	Accreditation Status					
Analytical Parameter	c	Limit of detection	St					
(Water Analysis)	Units	ŭ,	dita					
. , ,		g yf	sitio					
			3					
General Inorganics								
pH	pH Units	N/A	ISO 17025	7.5	7.2	7.1	7.3	7.8
Total Cyanide	μg/l	10	ISO 17025	< 10	< 10	< 10	< 10	< 10
Free Cyanide	μg/l	10	ISO 17025	< 10	< 10	< 10	< 10	< 10
Sulphate as SO ₄	μg/I	45	ISO 17025	133000	1290000	1990000	70800	130000
Sulphate as SO ₄	mg/l	0.045	ISO 17025	133	1290	1990	70.8	130
Alkalinity	mgCaCO3/I	3	ISO 17025	650	560	490	700	550
Dissolved Oxygen	mg/l	1	NONE	-	-	-	-	< 1.0
Phenols by HPLC	-							
Catechol	µg/l	0.5	NONE	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Resorcinol	µg/l	0.5	NONE	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Ethylphenol & Dimethylphenol	µg/l	0.5	NONE	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Cresols	µg/l	0.5	NONE	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Naphthols Isopropylphenol	µg/l	0.5	NONE	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Phenol	μg/l μg/l	0.5	NONE NONE	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5
Trimethylphenol	μg/l	0.5	NONE	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
mineuryphenor	µg/1	0.5	NONE	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Total Phenols								
Total Phenols (HPLC)	µg/l	3.5	NONE	< 3.5	< 3.5	< 3.5	< 3.5	< 3.5
Speciated PAHs								
Naphthalene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthylene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	0.88	< 0.01
Fluorene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Phenanthrene Anthracene	µg/l	0.01	ISO 17025 ISO 17025	< 0.01	< 0.01 < 0.01	< 0.01 < 0.01	< 0.01	< 0.01
Fluoranthene	μg/l μg/l	0.01	ISO 17025 ISO 17025	< 0.01	< 0.01	< 0.01	0.84	< 0.01
Pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	0.69	< 0.01
Benzo(a)anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Chrysene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(b)fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(k)fluoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)pyrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Indeno(1,2,3-cd)pyrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenz(a,h)anthracene	µg/l		ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(ghi)perylene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Total PAH Total EPA-16 PAHs	µg/l	0.16	ISO 17025	< 0.16	< 0.16	< 0.16	2.41	< 0.16
	µy/1	0.10	130 17025	< 0.10	< 0.10	< 0.10	2.71	< 0.10
Heavy Metals / Metalloids								
Arsenic (dissolved)	µg/l	0.15	ISO 17025	3.74	0.43	0.69	0.68	0.49
Boron (dissolved)	µg/l	10	ISO 17025	55	260	260	68	95
Cadmium (dissolved)	µg/l	0.02	ISO 17025	0.06	0.07	0.16	0.44	< 0.02
Calcium (dissolved)	mg/l	0.012	ISO 17025	-	-	-	-	99
Chromium (hexavalent)	µg/l	5	ISO 17025	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Chromium (dissolved)	µg/l	0.2	ISO 17025	0.6	< 0.2	0.4	0.4	< 0.2
Copper (dissolved)	µg/l	0.5	ISO 17025	7.1	3.5	3.8	7.0	2.5
Lead (dissolved)	µg/l	0.2	ISO 17025	0.4	< 0.2	0.7	0.2	< 0.2
Mercury (dissolved)	µg/l	0.05	ISO 17025	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Nickel (dissolved) Selenium (dissolved)	µg/l	0.5	ISO 17025	9.1 55	6.7 2.8	13	4.6 2.5	1.4 24
Zinc (dissolved)	µg/l	0.6	ISO 17025 ISO 17025	16	13	3.0 15	9.8	24
	μg/l	0.5	130 17025	10	13	13	7.0	2.0

Iss No 18-97864-1B Epsom Hospital - Main Hospital Site 10020221

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report are representative of the samples submitted for analysis.

Project / Site name: Epsom Hospital - Main Hospital Site

Lab Sample Number				1031735	1031740	1031741	1031742	1031743
Sample Reference				BH103	WS106	WS107	BH107	BH105 (s)
Sample Number	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
Depth (m)	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
Date Sampled				23/08/2018	23/08/2018	23/08/2018	23/08/2018	23/08/2018
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics								
Benzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µq/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Petroleum Hydrocarbons

TPH-CWG - Aliphatic >C5 - C6	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C6 - C8	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C8 - C10	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C10 - C12	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C12 - C16	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C16 - C21	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C21 - C35	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic (C5 - C35)	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C5 - C7	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C7 - C8	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C8 - C10	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C10 - C12	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C12 - C16	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C16 - C21	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C21 - C35	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic (C5 - C35)	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10

U/S = Unsuitable Sample I/S = Insufficient Sample

Project / Site name: Epsom Hospital - Main Hospital Site

Lab Sample Number				1031744				
Sample Reference				BH105 (d)				
Sample Number				None Supplied				
Depth (m)				None Supplied				
Date Sampled				23/08/2018				
Time Taken				None Supplied				
			A					
Analytical Parameter	c	Limit of detection	Accreditation Status					
(Water Analysis)	Units	ecti	atu					
(v	on of	s					
			ă					
General Inorganics	-						r	
pH	pH Units	N/A	ISO 17025	7.6				
Total Cyanide	µg/l	10 10	ISO 17025	< 10 < 10				
Free Cyanide Sulphate as SO₄	µg/l µg/l	45	ISO 17025 ISO 17025	98400				
Sulphate as SO ₄	mg/l	0.045	ISO 17025	98.4				
Alkalinity	mgCaCO3/I	3	ISO 17025	620				
Dissolved Oxygen	mg/l	1	NONE	6.0				
						.	<u>.</u>	·
Phenols by HPLC								
Catechol	µg/l	0.5	NONE	< 0.5				
Resorcinol	µg/l	0.5	NONE	< 0.5				
Ethylphenol & Dimethylphenol	µg/l	0.5	NONE	< 0.5				
Cresols	µg/l	0.5	NONE	< 0.5				
Naphthols	µg/l	0.5	NONE	< 0.5				
Isopropylphenol	µg/l	0.5	NONE	< 0.5				
Phenol	µg/l	0.5	NONE	< 0.5				
Trimethylphenol	µg/l	0.5	NONE	< 0.5				
Total Phenois		25		2.5		1	1	
Total Phenols (HPLC)	µg/l	3.5	NONE	< 3.5				
Speciated PAHs								
Naphthalene	µg/l	0.01	ISO 17025	< 0.01			1	
Acenaphthylene	µg/l	0.01	ISO 17025	< 0.01				
Acenaphthene	µg/l	0.01	ISO 17025	< 0.01				
Fluorene	µg/l	0.01	ISO 17025	< 0.01				
Phenanthrene	µg/l	0.01	ISO 17025	< 0.01				
Anthracene	µg/l	0.01	ISO 17025	< 0.01				
Fluoranthene	µg/l	0.01	ISO 17025	< 0.01				
Pyrene	µg/l	0.01	ISO 17025	< 0.01				
Benzo(a)anthracene	µg/l	0.01	ISO 17025	< 0.01				
Chrysene	µg/l	0.01	ISO 17025	< 0.01				
Benzo(b)fluoranthene	µg/l	0.01	ISO 17025	< 0.01				
Benzo(k)fluoranthene	µg/l	0.01	ISO 17025	< 0.01			 	
Benzo(a)pyrene	µg/l	0.01	ISO 17025 ISO 17025	< 0.01 < 0.01			 	
Indeno(1,2,3-cd)pyrene	µg/l	0.01					1	
Dibenz(a,h)anthracene Benzo(ghi)perylene	µg/l µg/l	0.01	ISO 17025 ISO 17025	< 0.01			<u> </u>	
perizo(grif/per/rene	P9/1	0.01	130 17023	× 0.01		1		я
Total PAH								
Total EPA-16 PAHs	µg/l	0.16	ISO 17025	< 0.16				
						•	-	•
Heavy Metals / Metalloids								
Arsenic (dissolved)	µg/l	0.15	ISO 17025	0.87				
Boron (dissolved)	µg/l	10	ISO 17025	44				
Cadmium (dissolved)	µg/l	0.02	ISO 17025	< 0.02				
Calcium (dissolved)	mg/l	0.012	ISO 17025	110				
Chromium (hexavalent)	µg/l	5	ISO 17025	< 5.0				ļ
Chromium (dissolved)	µg/l	0.2	ISO 17025	< 0.2			ļ	
Copper (dissolved)	µg/l	0.5	ISO 17025	< 0.5			ł	
Lead (dissolved)	µg/l	0.2	ISO 17025	< 0.2			ł	
Mercury (dissolved)	µg/l	0.05	ISO 17025	< 0.05	-		ł	
Nickel (dissolved)	µg/l	0.5	ISO 17025	1.5			l	
Selenium (dissolved) Zinc (dissolved)	µg/l	0.6	ISO 17025	23 0.6			ł	
	µg/l	0.5	ISO 17025	0.0		I	I	

Project / Site name: Epsom Hospital - Main Hospital Site

Lab Camala Number				1031744			
Lab Sample Number				BH105 (d)			
Sample Reference							
Sample Number	None Supplied						
Depth (m)	None Supplied						
Date Sampled				23/08/2018			
Time Taken				None Supplied			
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status				
Monoaromatics						-	
Benzene	µg/l	1	ISO 17025	< 1.0			
Toluene	µg/l	1	ISO 17025	< 1.0			
Ethylbenzene	µg/l	1	ISO 17025	< 1.0			
p & m-xylene	µg/l	1	ISO 17025	< 1.0			
o-xylene	µg/l	1	ISO 17025	< 1.0			
MTBE (Methyl Tertiary Butyl Ether)	µg/l	1	ISO 17025	< 1.0			

Petroleum Hydrocarbons

TPH-CWG - Aliphatic >C5 - C6	µg/l	1	ISO 17025	< 1.0		
TPH-CWG - Aliphatic >C6 - C8	µg/l	1	ISO 17025	< 1.0		
TPH-CWG - Aliphatic >C8 - C10	µg/l	1	ISO 17025	< 1.0		
TPH-CWG - Aliphatic >C10 - C12	µg/l	10	NONE	< 10		
TPH-CWG - Aliphatic >C12 - C16	µg/l	10	NONE	< 10		
TPH-CWG - Aliphatic >C16 - C21	µg/l	10	NONE	< 10		
TPH-CWG - Aliphatic >C21 - C35	µg/l	10	NONE	< 10		
TPH-CWG - Aliphatic (C5 - C35)	µg/l	10	NONE	< 10		
TPH-CWG - Aromatic >C5 - C7	µg/l	1	ISO 17025	< 1.0		
TPH-CWG - Aromatic >C7 - C8	µg/l	1	ISO 17025	< 1.0		
TPH-CWG - Aromatic >C8 - C10	µg/l	1	ISO 17025	< 1.0		
TPH-CWG - Aromatic >C10 - C12	µg/l	10	NONE	< 10		
TPH-CWG - Aromatic >C12 - C16	µg/l	10	NONE	< 10		
TPH-CWG - Aromatic >C16 - C21	µg/l	10	NONE	< 10		
TPH-CWG - Aromatic >C21 - C35	µg/l	10	NONE	< 10		
TPH-CWG - Aromatic (C5 - C35)	µg/l	10	NONE	< 10		

U/S = Unsuitable Sample I/S = Insufficient Sample

Project / Site name: Epsom Hospital - Main Hospital Site

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

	1				
Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Alkalinity in Water	Determination of Alkalinity by discreet analyser (colorimetry). Accredited matrices: SW, PW, GW.	In house method based on MEWAM & USEPA Method 310.2.	L082-PL	W	ISO 17025
Boron in water	Determination of boron in water by acidification followed by ICP-OES. Accredited matrices: SW PW GW	In-house method based on MEWAM	L039-PL	w	ISO 17025
BTEX and MTBE in water (Monoaromatics)	Determination of BTEX and MTBE in water by headspace GC-MS. Accredited matrices: SW PW GW	In-house method based on USEPA8260	L073B-PL	w	ISO 17025
Dissolved Oxygen in water	Determination of dissolved oxygen.	In-house method	L086-PL	W	NONE
Free cyanide in water	Determination of free cyanide by distillation followed by colorimetry.Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	ISO 17025
Hexavalent chromium in water	Determination of hexavalent chromium in water by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method by continuous flow analyser. Accredited Matrices SW, GW, PW.	L080-PL	w	ISO 17025
Metals in water by ICP-MS (dissolved)	Determination of metals in water by acidification followed by ICP-MS. Accredited Matrices: SW, GW, PW except B=SW,GW, Hg=SW,PW, Al=SW,PW.	In-house method based on USEPA Method 6020 & 200.8 "for the determination of trace elements in water by ICP-MS.	L012-PL	W	ISO 17025
Metals in water by ICP-OES (dissolved)	Determination of metals in water by acidification followed by ICP-OES. Accredited Matrices SW, GW, PW, PrW.(Al, Cu,Fe,Zn).	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
pH at 20oC in water (automated)	Determination of pH in water by electrometric measurement. Accredited matrices: SW PW GW	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L099-PL	w	ISO 17025
Phenols, speciated, in water, by HPLC	Determination of speciated phenols by HPLC.	In house method based on Blue Book Method.	L030-PL	W	NONE
Speciated EPA-16 PAHs in water	Determination of PAH compounds in water by extraction in dichloromethane followed by GC-MS with the use of surrogate and internal standards. Accredited matrices: SW PW GW	In-house method based on USEPA 8270	L102B-PL	W	ISO 17025
Sulphate in water	Determination of sulphate in water by acidification followed by ICP-OES. Accredited matrices: SW PW GW, PrW.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	w	ISO 17025
Total cyanide in water	Determination of total cyanide by distillation followed by colorimetry. Accredited matrices: SW PW GW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	w	ISO 17025
TPHCWG (Waters)	Determination of dichloromethane extractable hydrocarbons in water by GC-MS, speciation by interpretation.	In-house method	L070-PL	w	NONE
	K' analysis have been carried out in our labora				

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Sample ID	Other_ID	Sample Type	Job	Sample Number	Sample Deviation Code	test_name	test_ref	Test Deviation code
BH103		W	18-97864	1031735	С	pH at 20oC in water (automated)	L099-PL	С
BH105 (d)		W	18-97864	1031744	С	Dissolved Oxygen in water	L086-PL	С
BH105 (d)		W	18-97864	1031744	с	pH at 20oC in water (automated)	L099-PL	С
BH105 (s)		W	18-97864	1031743	С	Dissolved Oxygen in water	L086-PL	С
BH105 (s)		W	18-97864	1031743	с	pH at 20oC in water (automated)	L099-PL	С
BH107		W	18-97864	1031742	cd	BTEX and MTBE in water (Monoaromatics)	L073B-PL	d
BH107		W	18-97864	1031742	cd	TPHCWG (Waters)	L070-PL	d
BH107		W	18-97864	1031742	cd	pH at 20oC in water (automated)	L099-PL	С
WS106		W	18-97864	1031740	cd	BTEX and MTBE in water (Monoaromatics)	L073B-PL	d
WS106		W	18-97864	1031740	cd	TPHCWG (Waters)	L070-PL	d
WS106		W	18-97864	1031740	cd	pH at 20oC in water (automated)	L099-PL	С
WS107		W	18-97864	1031741	cd	BTEX and MTBE in water (Monoaromatics)	L073B-PL	d
WS107		W	18-97864	1031741	cd	TPHCWG (Waters)	L070-PL	d
WS107		W	18-97864	1031741	cd	pH at 20oC in water (automated)	L099-PL	C

APPENDIX H - Geo-Environmental Risk Assessment Information

CONCEPTUAL SITE MODEL

General

The aim of the initial conceptual model and risk assessment is to provide a preliminary identification of the risks to controlled waters, proposed future site users and the surrounding area posed by any contamination present on site. The assessment is based on identification of 'contaminant linkages', i.e. contaminant-pathway-receptor relationships. This approach accords with the guidance that accompanies Part 2A of the Environmental Protection Act of 1990 where land is considered to be contaminated when 'significant harm' is occurring, or where there is the 'significant possibility of significant harm' or where significant pollution of controlled waters is being, or is likely to be caused. In such cases the contaminant linkage itself is defined as being 'significant'.

A source of contamination and a pathway to receptors must be present for there to be a risk. The preliminary risk assessment assesses the strength of the link between the source, the pathway and the receptor.

Source - Contaminant that has potential to cause harm to environmental receptors. In a wider sense, sources can include particular ground conditions, for example the existence of redundant footings, which have the potential to impact on development proposals.

Pathway - The route by which the source is brought into contact with the receptor. This can include the transport of contamination via groundwater, wind-blown dust, vapours, excavation and deposition etc.

Receptor - Human beings, other living organisms, physical systems and built structures that could be affected by the source. A receptor will only be affected if a pathway from the source to the receptor is present. Groundwater and surface water systems can be considered as receptors in their own right as their quality is regulated by the statutory bodies, as well as being pathways for contaminant migration to other receptors.

ENVIRONMENTAL RISK ASSESSMENT

Qualitative Methodology

The risk assessment considers the potential sources, receptors and pathways identified in the Conceptual Site Model.

The environmental assessment has been undertaken with due regard to Contaminated Land Guidance Documents issued by the Department of the Environment Food and Rural Affairs (DEFRA). The Guidance requires a risk-based approach; with the potential environmental risk assessed qualitatively using the 'source-pathway-target' contaminant linkage concept contained in Part 2A of the Environment Protection Act. Unless specifically stated as relating to 'Contaminated Land' as defined in the Environmental Protection Act 1990 (as amended), references to 'contamination' and 'contaminants' relate in general terms to the presence of potentially hazardous substances, in, on or under the subject site.

Based on information presented in

- CIRIA C552 (2001) Contaminated Land Risk Assessment: A guide to good practice; and
- NHBC / EA/ CIEH (2008) R&D Publication 66: (Volume 1) Guidance for the Safe Development of Housing on Land Affected by Contamination
- DEFRA (2012) Environmental Protection Act 1990: Part 2A. Contaminated Land Statutory Guidance

Risk assessment considers the identified sources, the potential receptors and the pathways linking them together.

The designation of risk is based upon the consideration of both:

- a. **the severity of the potential consequence -** this takes into account both the potential severity of the hazard and the sensitivity of the receptor
- b. **the magnitude of probability** (i.e. likelihood) this takes into account both the presence of the hazard and receptor and the integrity of the pathway

Severity (consequence) can be defined as the adverse effects (or harm) arising from a defined hazard, which impairs the quality of human health or the environment in the short or longer term. Definitions of different categories of severity are detailed in Table 1 below.

Probability can be defined as the chance of a particular event occurring in a given period of time. Definitions of different categories of probability are detailed in Table 2 below.

A contaminant linkage must first be established before tests for probability and consequence are applied. If there is no contaminant linkage then there is no potential risk.

	Human Health	Controlled Water	Built Environment ¹	Ecosystems ²
Severe	Short term (acute) risk to human health. Concentrations present <u>likely</u> to result in "significant harm" as defined by Part 2A.	Substantial pollution of sensitive water resources.	Catastrophic damage to buildings, structures or the environment, including building collapse.	Major damage to aquatic or other ecosystem, which is likely to result in a substantial adverse change or irreversible change in its functioning or harm to a species of special interest.
Medium	Chronic damage to human health. Concentrations present that <u>could</u> result in significant harm.	Pollution of sensitive water resources or small scale pollution of sensitive water resources	Significant damage to buildings, structures or the environment making it unsafe to occupy, or damage that may impair a scheduled ancient monument.	Significant damage to aquatic or other ecosystems or organism forming part of an ecosystem that could endanger the long term maintenance of a population at that location.
Mild	Slight short term health effects to humans. Exposure to human health <u>unlikely</u> to lead to significant harm.	Pollution to non- sensitive water resources	Minor damage to sensitive buildings, structures, services or the environment.	Minor or short lived damage to aquatic or other ecosystems.
Minor	Non-permanent health effects to human health (easily prevented by means such as personal protective clothing etc.)	Insubstantial pollution to non-sensitive water resources	Easily repairable effects of damage to buildings or structures	Harm (although not necessarily significant harm which may result in financial loss or expenditure to resolve e.g. loss of plants in a landscape scheme).

Table 1 - Classification of Potential Consequence (Severity)

- Property includes crops including timber, produce grown domestically (gardens or allotments for consumption), livestock, other owned or domesticated animals or wild animals which are subject to shooting or fishing rights. It also includes buildings, meaning any structure or erection, but does not include plant or machinery within a building or buried services.
- 2. Where ecological system effects relate to a Site of Special Scientific Interest (SSSI), National Nature Reserves (NNR), Marine Nature Reserve (MNR), and areas of Special Protection for Birds, a "European site", or any habitat or site afforded protection under the Wildlife & Countryside Act 1981 and The Conservation of Habitats and Species Regulations 2010, i.e. candidate Special Areas of Conservation, potential Special Protection Areas and listed Ramsar sites.

Table 2 Classification of Probability

(Only applies if there is a possibility of a contaminant linkage being present)

High likelihood	There is a contaminant linkage and an event that either appears very likely in the short term and almost inevitable over the long term or there is evidence at the receptor of harm or pollution.
Likely	There is a contaminant linkage and all the elements are present and in the right place, which means that it is probable that an event will occur. Circumstances are such that an event is not inevitable, but possible in the short term and likely over the long term.
Low Likelihood	There is a contaminant linkage and circumstances are possible under which an event could occur. However it is by no means certain that even over a longer period such an event would take place and is less likely in the shorter term.
Unlikely	There is a contaminant linkage but circumstances are such that it is improbable that an event would occur even in the very long term.

Table 3 Classification of Risk

Once the severity and probability have been classified for a contaminant linkage they can be compared to produce a risk category from very high risk to very low risk as shown in the matrix below.

Probability	Unlikely	Low	Likely	High
Minor	Very Low	Very Low	Low	Moderate/Low
Mild	Very Low	Low	Moderate/Low	Moderate
Medium	Low	Moderate/Low	Moderate	High
Severe	Moderate/Low	Moderate	High	Very High
Consequence				

Table 4 Risk Classification Descriptions

Table 4 below describes the risk classifications.

Risk Term	Description
Very High Risk	There is a high probability that significant harm could arise to a designated receptor from an identified hazard at the site without appropriate remedial action or there is evidence that significant harm to a designated receptor is already occurring.
High Risk	Harm is likely to arise to a designated receptor from an identified hazard at the site without appropriate remedial action. Remediation works may be necessary in the short-term and are likely over the longer term.
Moderate Risk	It is possible that harm could arise to a designated receptor from an identified hazard. However it is either relatively unlikely that any such harm would be severe or if any harm were to occur it is more likely that such harm would be relatively mild. Some remediation work may be required in the longer term.
Low Risk	It is possible that harm could arise to a designated receptor from an identified hazard, but it is likely, at worst, that this harm if realised would normally be mild. Any subsequent remediation works are likely to be relatively limited.
Very Low Risk	It is a low possibility that harm could arise to a receptor, but it is likely at worst, that this harm if realised would normally be mild or minor.

Arcadis (UK) Limited

Level 1 2 Glass Wharf Temple Quay Bristol BS2 0FR

T: +44 (0)117 372 1200

arcadis.com