ate 04/12	2/2019 10	: 36		Desi	.gned b	_ Micro				
ile Atter			.SRCX		ked by	7 Jacoria			Drain	ac
nnovyze					ce Con	trol 2018	8.1.1			
	Summar	y of Res	ults	for 10)0 year	Return	Period	(+40%)	-	
	Storm	Max	Max	м	lax	Max	Max	Max	Status	
	Event	Level	-			Control S				
		(m)	(m)	(1	/s)	(1/s)	(l/s)	(m³)		
3	30 min Wint	er 59.377	0.377		0.0	53.3	53.3	306.0	ОК	
	50 min Wint				0.0	54.0	54.0	345.0	ОК	
	20 min Wint				0.0	53.7	53.7	332.0	ОК ОК	
	30 min Wint 10 min Wint				0.0	53.2 52.5	53.2 52.5	302.8 267.3	0 K 0 K	
	50 min Wint				0.0	51.2	51.2	199.8	ОК	
	30 min Wint				0.0	49.9	49.9	139.2	ОК	
)0 min Wint				0.0	48.8	48.8	87.8	ОК	
	20 min Wint				0.0	47.8	47.8	46.5	ОК	
	50 min Wint				0.0	46.7	46.7	0.2	ОК	
	40 min Wint 50 min Wint				0.0	34.3 25.0	34.3 25.0	0.0 0.0	ок ок	
	30 min Wint				0.0	19.9	19.9	0.0	ОК	
432	20 min Wint	er 59.000	0.000		0.0	14.4	14.4	0.0	ОК	
576	50 min Wint		0.000		0.0	11.5	11.5	0.0	O K	
720)0 min Wint	er 59.000 er 59.000	0.000		0.0	9.6	9.6	0.0	O K	
720 864		er 59.000 er 59.000 er 59.000	0.000 0.000		0.0					
720 864)0 min Wint 40 min Wint	er 59.000 er 59.000 er 59.000	0.000 0.000 0.000		0.0 0.0 0.0 Flooded Volume	9.6 8.3 7.4 Discharge Volume	9.6 8.3 7.4	0.0 0.0 0.0	О К О К	
720 864)0 min Wint 40 min Wint	er 59.000 er 59.000 er 59.000 er 59.000	0.000 0.000 0.000	Rain	0.0 0.0 0.0 0.0	9.6 8.3 7.4 Discharge	9.6 8.3 7.4 • Time-Pe	0.0 0.0 0.0	О К О К	
720 864)0 min Wint 40 min Wint	er 59.000 er 59.000 er 59.000 storm Event 30 min Wi	0.000 0.000 0.000 (Rain mm/hr) 88.566	0.0 0.0 0.0 Flooded Volume (m ³) 0.0	9.6 8.3 7.4 Discharge Volume (m ³) 408.0	9.6 8.3 7.4 • Time-Pe (mins	0.0 0.0 0.0	О К О К	
720 864	00 min Wint 40 min Wint 30 min Wint	er 59.000 er 59.000 er 59.000 er 59.000 Storm Event 30 min Wi 60 min Wi	0.000 0.000 0.000 (nter nter	Rain mm/hr) 88.566 56.713	0.0 0.0 0.0 Flooded Volume (m ³) 0.0 0.0	9.6 8.3 7.4 Discharge Volume (m ³) 408.0	9.6 8.3 7.4 • Time-Pe (mins	0.0 0.0 0.0 9 ak) 35 60	О К О К	
720 864	00 min Wint 40 min Wint 30 min Wint	er 59.000 er 59.000 er 59.000 er 59.000 Storm Event 30 min Wi 60 min Wi 20 min Wi	0.000 0.000 0.000 (nter nter nter	Rain mm/hr) 88.566 56.713 35.004	0.0 0.0 0.0 Flooded Volume (m ³) 0.0 0.0 0.0	9.6 8.3 7.4 Discharge Volume (m ³) 408.0 523.1 646.8	9.6 8.3 7.4 • Time-Pe (mins	0.0 0.0 0.0 35 60 98	О К О К	
720 864	00 min Wint 40 min Wint 30 min Wint	er 59.000 er 59.000 er 59.000 er 59.000 Storm Event 30 min Wi 60 min Wi	0.000 0.000 0.000 (nter nter nter nter	Rain mm/hr) 88.566 56.713	0.0 0.0 0.0 Flooded Volume (m ³) 0.0 0.0 0.0 0.0	9.6 8.3 7.4 Discharge Volume (m ³) 408.0 523.1 646.8 720.2	9.6 8.3 7.4 • Time-Pe (mins 0 1 3 2	0.0 0.0 0.0 9 ak) 35 60	О К О К	
720 864	00 min Wint 40 min Wint 30 min Wint	er 59.000 er 59.000 er 59.000 er 59.000 Storm Event 30 min Wi 60 min Wi 80 min Wi 40 min Wi 60 min Wi	0.000 0.000 0.000 (nter nter nter nter nter nter nter	Rain mm/hr) 88.566 56.713 35.004 25.973	0.0 0.0 0.0 Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0	9.6 8.3 7.4 Discharge Volume (m ³) 408.0 523.1 646.8 720.2 772.2 849.5	9.6 8.3 7.4 • Time-Pe (mins 0 1 3 2 2 1 7 2 2	0.0 0.0 0.0 35 60 98 .36 .72 242	О К О К	
720 864	00 min Wint 40 min Wint 30 min Wint	er 59.000 er 59.000 er 59.000 er 59.000 Storm Event 30 min Wi 60 min Wi 80 min Wi 80 min Wi 80 min Wi 80 min Wi	0.000 0.000 0.000 (nter nter nter nter nter nter nter nter	Rain mm/hr) 88.566 56.713 35.004 25.973 20.877 15.365 12.341	0.0 0.0 0.0 Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	9.6 8.3 7.4 Discharge Volume (m ³) 408.0 523.1 646.8 720.2 772.2 849.5 909.1	9.6 8.3 7.4 e Time-Pe (mins 0 1 3 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.0 0.0 0.0 35 60 98 36 72 242 806	О К О К	
720 864	00 min Wint 10 min Wint 30 min Wint	er 59.000 er 59.000 er 59.000 er 59.000 Storm Event 30 min Wi 60 min Wi 80 min Wi 80 min Wi 60 min Wi 80 min Wi 80 min Wi	0.000 0.000 0.000 (nter nter nter nter nter nter nter nter	Rain mm/hr) 88.566 56.713 35.004 25.973 20.877 15.365 12.341 10.402	0.0 0.0 0.0 Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	9.6 8.3 7.4 Discharge Volume (m ³) 408.0 523.1 646.8 720.2 772.2 849.5 909.1 960.2	9.6 8.3 7.4 Time-Pe (mins 0 1 3 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.0 0.0 0.0 0.0 98 36 72 242 806 866	О К О К	
720 864	00 min Wint 10 min Wint 30 min Wint	er 59.000 er 59.000 er 59.000 er 59.000 Storm Event 30 min Wi 60 min Wi 80 min Wi 80 min Wi 80 min Wi 80 min Wi 80 min Wi 20 min Wi 20 min Wi	0.000 0.000 0.000 (nter nter nter nter nter nter nter nter	Rain mm/hr) 88.566 56.713 35.004 25.973 20.877 15.365 12.341 10.402 9.042	0.0 0.0 0.0 Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	9.6 8.3 7.4 Discharge Volume (m ³) 408.0 523.1 646.8 720.2 772.2 849.5 909.1 960.2 1000.2	9.6 8.3 7.4 e Time-Pe (mins 0 1 3 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.0 0.0 0.0 0.0 35 60 98 .36 .72 242 806 866 820	О К О К	
720 864	00 min Wint 40 min Wint 30 min Wint 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	er 59.000 er 59.000 er 59.000 er 59.000 Storm Event 30 min Wi 60 min Wi 80 min Wi 80 min Wi 60 min Wi 80 min Wi 80 min Wi	0.000 0.000 0.000 (nter nter nter nter nter nter nter nter	Rain mm/hr) 88.566 56.713 35.004 25.973 20.877 15.365 12.341 10.402	0.0 0.0 0.0 Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	9.6 8.3 7.4 Discharge Volume (m ³) 408.0 523.1 646.8 720.2 772.2 849.7 909.1 960.2 1000.2 1069.5	9.6 8.3 7.4 e Time-Pe (mins 0 1 3 2 1 2 2 2 2 2 2 2 4 5 4 4	0.0 0.0 0.0 0.0 98 36 72 242 806 866	О К О К	
720 864	00 min Wint 40 min Wint 30 min Wint 10 11 12 14 14 14	er 59.000 er 59.000 er 59.000 er 59.000 Storm Event 30 min Wi 60 min Wi 80 min Wi	0.000 0.000 0.000 (nter nter nter nter nter nter nter nter	Rain mm/hr) 88.566 56.713 35.004 25.973 20.877 15.365 12.341 10.402 9.042 7.241	0.0 0.0 0.0 Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	9.6 8.3 7.4 Discharge Volume (m ³) 408.0 523.1 646.8 720.2 772.2 849.5 909.1 960.2 1000.2 1069.5 1170.5	9.6 8.3 7.4 Time-Pe (mins 0 1 3 2 1 2 2 2 2 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 3 3 2 3 3 2 3	0.0 0.0 0.0 0.0 35 60 98 36 72 242 306 366 366 366 366 320	О К О К	
720 864	00 min Wint 10 min Wint 30 min Wint 130 min Wint 130 min Wint 130 min Wint 140 min Wint 140 min Wint 140 min Wint 140 min	er 59.000 er 59.000 er 59.000 er 59.000 Storm Event 30 min Wi 60 min Wi 20 min Wi 80 min Wi 80 min Wi 80 min Wi 20 min Wi 20 min Wi 20 min Wi 20 min Wi 20 min Wi 80 min Wi 80 min Wi 80 min Wi 80 min Wi	0.000 0.000 0.000 (nter nter nter nter nter nter nter nter	Rain mm/hr) 88.566 56.713 35.004 25.973 20.877 15.365 12.341 10.402 9.042 7.241 5.284 3.848 3.068	0.0 0.0 0.0 Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	9.6 8.3 7.4 Discharge Volume (m ³) 408.0 523.1 646.8 720.2 772.2 849.5 909.1 960.2 1000.2 1069.5 1170.5 1278.5	9.6 8.3 7.4 E Time-Pe (mins 0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.0 0.0 0.0 0.0 98 36 72 242 306 366 420 194 0 0 0	О К О К	
720 864	00 min Wint 10 min Wint 30 min Wint 30 min Wint 30 min Wint 30 min	er 59.000 er 59.000 er 59.000 er 59.000 Storm Event 30 min Wi 60 min Wi 20 min Wi 80 min Wi 80 min Wi 80 min Wi 80 min Wi 20 min Wi 20 min Wi 60 min Wi 60 min Wi 80 min Wi 20 min Wi 20 min Wi 20 min Wi	0.000 0.000 0.000 (nter nter nter nter nter nter nter nter	Rain mm/hr) 88.566 56.713 35.004 25.973 20.877 15.365 12.341 10.402 9.042 7.241 5.284 3.848 3.068 2.226	0.0 0.0 0.0 Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	9.6 8.3 7.4 Discharge Volume (m ³) 408.0 523.1 646.8 720.2 772.2 849.5 909.1 960.2 1000.2 1069.5 1170.5 1278.5 1359.6 1479.6	9.6 8.3 7.4 Time-Pe (mins (mins 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.0 0.0 0.0 0.0 98 36 72 242 306 366 420 194 0 0 0 0 0	О К О К	
720 864	00 min Wint 40 min Wint 30 min Wint 30 min Wint 1 1 2 3 4 4 4 5 5	er 59.000 er 59.000 er 59.000 er 59.000 Storm Event 30 min Wi 60 min Wi 20 min Wi 80 min Wi 80 min Wi 80 min Wi 80 min Wi 20 min Wi 60 min Wi 60 min Wi 80 min Wi	0.000 0.000 0.000 (nter nter nter nter nter nter nter nter	Rain mm/hr) 88.566 56.713 35.004 25.973 20.877 15.365 12.341 10.402 9.042 7.241 5.284 3.848 3.068 2.226 1.771	0.0 0.0 0.0 Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	9.6 8.3 7.4 Discharge Volume (m ³) 408.0 523.1 646.8 720.2 772.2 849.7 909.1 960.2 1000.2 1000.2 1000.2 1009.5 1170.7 1278.7 1359.6 1479.6	9.6 8.3 7.4 Time-Pe (mins (mins 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 3 2 3 2 3 2 3 3 2 3 3 2 3 3 2 3 3 3 3 3 4 4 3 3 7 4 8 3 7 4 8 3 7 4 8 3 7 5 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0.0 0.0 0.0 0.0 98 36 72 242 306 366 120 194 0 0 0 0 0 0	О К О К	
720 864	00 min Wint 40 min Wint 30 min Wint 30 min Wint 1 1 2 3 4 4 4 5 5 7 2 4 4 5 7 2 4 5 7 2 4 5 7 2 4 5 7 2 4 5 7 2 4 5 7 2 4 5 7 2 4 5 7 2 4 5 7 2 4 5 7 2 4 5 7 2 7 2 7 2 7 2 7 2 7 2 7 7 2 7 7 7 7	er 59.000 er 59.000 er 59.000 er 59.000 Storm Event 30 min Wi 60 min Wi 20 min Wi 80 min Wi 80 min Wi 80 min Wi 80 min Wi 20 min Wi 20 min Wi 60 min Wi 60 min Wi 80 min Wi 20 min Wi 20 min Wi 20 min Wi	0.000 0.000 0.000 (nter nter nter nter nter nter nter nter	Rain mm/hr) 88.566 56.713 35.004 25.973 20.877 15.365 12.341 10.402 9.042 7.241 5.284 3.848 3.068 2.226	0.0 0.0 0.0 Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	9.6 8.3 7.4 Discharge Volume (m ³) 408.0 523.1 646.8 720.2 772.2 849.7 909.1 960.2 1000.2 1000.2 1000.2 1000.2 1009.5 1170.7 1278.7 1359.6 1479.6 1569.1	9.6 8.3 7.4 Time-Pe (mins (mins 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 3 3	0.0 0.0 0.0 0.0 98 36 72 242 306 366 420 194 0 0 0 0 0	О К О К	

Hydrock Consultants Ltd		Page 3
•		Mirco
Date 04/12/2019 10:36	Designed by jasonmagee	Micro Drainage
File Attenuation (Complex).SRCX	Checked by	Diamage
Innovyze	Source Control 2018.1.1	
Ra	infall Details	
Rainfall Model Return Period (years) Region Engla M5-60 (mm) Ratio R Summer Storms	100Cv (Summer) 0.7and and WalesCv (Winter) 0.820.000Shortest Storm (mins)0.350Longest Storm (mins) 100	40 15
Tin	ne Area Diagram	
Tota	al Area (ha) 1.099	
	me (mins) Area Time (mins) Area om: To: (ha) From: To: (ha)	
0 4 0.366	4 8 0.366 8 12 0.366	
©198	2-2018 Innovyze	

Date 04/12/2019 10:36 File Attenuation (Complex).SRCX Checked by	Hydrock Consultants Ltd					Page 4	
bate 04/12/2019 10:36 Pile Attenuation (Complex).SRCX Checked by Source Control 2018.1.1 Model Details Storage is Online Cover Level (m) 59.500 Complex Structure Tank or Pond Invert Level (m) 59.000 Depth (m) Area (m ²) pepth (m) Area (m ²) 0.000 250.0 0.500 450.0 0.501 0.0 Cellular Storage Invert Level (m) 59.0000 Perceity 0.30 Infiltration Coefficient Side (m/mr) 0.00000 Perceity 0.33 Infiltration Coefficient Side (m/mr) 0.00000 Depth (m) Area (m ²) pepth (m) Area (m ²) and a control Newer Level (m) 59.000 Safety Pactor 2.0 Infiltration Coefficient Side (m/mr) 0.0000 Perceity 0.33 Infiltration Coefficient Side (m/mr) 0.0000 Depth (m) Area (m ²) Inf. Area (m ²) bepth (m) Area (m ²) Inf. Area (m ²) 0.000 1635.0 0.0 Hydro-Brake® Optimum Outflow Control This Reference ND-SHE-0293-5200-1500-5200 Design Head (m) 1.500 Design Plow (1/s) 52.0 Plumh-Plow Calculated Objective Minimise upstream storage Map Available res Sump Available res Sump Available res Sump Available res Sump Available res Sump Available res Sump Available res Sugested Manhole Diameter (mn) 2100 Control Points Head (m) Flow (1/s) Design Fion (Calculated) 1.500 52.0 Flush-Plow 0.508 52.0 Kick-Plow 1.071 44.2 Kean Flow vert Head Range - 43.8 The hydrological calculations have been based on the Head/Discharge relationship for the Pydro-Brake@ Optimum Sutflew Events avages relationship for the Pydro-Brake@ Optimum Sutflew Events a	·						
Internet (unprint, text) [means of print, text] [Model Details Source Control 2018.1.1 Model Details Storage is Online Cover Level (m) 59.500 Complex Structure Tank or Pond Invert Level (m) 59.000 Depth (m) Area (m²) [Depth (m) Area (m²) 0.000 250.0] 0.500 450.0] 0.501 0.0 Cellular Storage Invert Level (m) 59.000 Safety Factor 2.0 Infiltration Coefficient Sade (m/hr) 0.00000 Depth (m) Area (m²) Inf. Area (m²) [Depth (m) Area (m²) 0.000 1635.0 0.501 0.0 Depth (m) Area (m²) Inf. Area (m²) [Depth (m) Area (m²) 1.500 Depth (m) Area (m²) Inf. Area (m²) [Depth (m) Area (m²) Inf. Area (m²) 0.000 1635.0 0.500 1635.0 0.00 Hydro-Brake@ Optimum Outflow Control Unit Reference MD-SHE-0293-5200-1500-5200 Design Flow (1/s) Surface Application Surface Application Surface Minimum Outfler Pipe Diameter (mm) Surface Minimum Outfler Pipe Diameter (mm) Surgested Manhole Diameter (mm) Minimum Outfler Pipe							
Internet (unprint, text) [means of print, text] [Model Details Source Control 2018.1.1 Model Details Storage is Online Cover Level (m) 59.500 Complex Structure Tank or Pond Invert Level (m) 59.000 Depth (m) Area (m²) [Depth (m) Area (m²) 0.000 250.0] 0.500 450.0] 0.501 0.0 Cellular Storage Invert Level (m) 59.000 Safety Factor 2.0 Infiltration Coefficient Sade (m/hr) 0.00000 Depth (m) Area (m²) Inf. Area (m²) [Depth (m) Area (m²) 0.000 1635.0 0.501 0.0 Depth (m) Area (m²) Inf. Area (m²) [Depth (m) Area (m²) 1.500 Depth (m) Area (m²) Inf. Area (m²) [Depth (m) Area (m²) Inf. Area (m²) 0.000 1635.0 0.500 1635.0 0.00 Hydro-Brake@ Optimum Outflow Control Unit Reference MD-SHE-0293-5200-1500-5200 Design Flow (1/s) Surface Application Surface Application Surface Minimum Outfler Pipe Diameter (mm) Surface Minimum Outfler Pipe Diameter (mm) Surgested Manhole Diameter (mm) Minimum Outfler Pipe						Micco	
Internet (unprint, text) [means of print, text] [Model Details Source Control 2018.1.1 Model Details Storage is Online Cover Level (m) 59.500 Complex Structure Tank or Pond Invert Level (m) 59.000 Depth (m) Area (m²) [Depth (m) Area (m²) 0.000 250.0] 0.500 450.0] 0.501 0.0 Cellular Storage Invert Level (m) 59.000 Safety Factor 2.0 Infiltration Coefficient Sade (m/hr) 0.00000 Depth (m) Area (m²) Inf. Area (m²) [Depth (m) Area (m²) 0.000 1635.0 0.501 0.0 Depth (m) Area (m²) Inf. Area (m²) [Depth (m) Area (m²) 1.500 Depth (m) Area (m²) Inf. Area (m²) [Depth (m) Area (m²) Inf. Area (m²) 0.000 1635.0 0.500 1635.0 0.00 Hydro-Brake@ Optimum Outflow Control Unit Reference MD-SHE-0293-5200-1500-5200 Design Flow (1/s) Surface Application Surface Application Surface Minimum Outfler Pipe Diameter (mm) Surface Minimum Outfler Pipe Diameter (mm) Surgested Manhole Diameter (mm) Minimum Outfler Pipe	Date 04/12/2019 10:36	Designed	by ja	sonmagee			
Model Details Storage is Online Cover Level (m) 59.500 Complex Structure Tank or Pond Invert Level (m) 59.000 Depth (m) Area (m²) Depth (m) Area (m²) 0.000 250.0 Operation of the storage Invert Level (m) 59.000 Safety Factor 2.0 Infiltration Coefficient Saie (m/hr) 0.0000 Depth (m) Area (m²) Inf. Area (m²) Operation of the storage Invert Level (m) Area (m²) Inf. Area (m²) Infiltration Coefficient Side (m/hr) 0.0000 Depth (m) Area (m²) Inf. Area (m²) Operation of the storage of the storage 0.000 Operation Operation Operation Sume Available Vector Minimise upstream storage Application Suggested Manhole Diameter (mm) Operation Sufface Suggested Manhole Diameter (mm) Storage Invert Level (m) 57.800 Manimum Outlet Pipe Diameter (mm) 1.500	File Attenuation (Complex).SRCX	Checked	by			Dialitalje	
Storage is Online Cover Level (m) 59:503 Complex Structure Tank or Pond Tank or Pond Tank or Pond Depth (m) Area (m²) Pepth (m) Area (m²) Opeth (m) Area (m²) Pepth (m) Area (m²) 0.000 250.0 Opeth (m) Area (m²) Pepth (m) Area (m²) 0.000 250.0 Opeth (m) Area (m²) Pepth (m) Area (m²) Opeth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²) Opeth (m²) Inf. Area (m²) Inf. Area (m²) Opeth	Innovyze	Source C	ontrol	2018.1.	L		
Storage is Online Cover Level (m) 59:503 Complex Structure Tank or Pond Tank or Pond Tank or Pond Depth (m) Area (m²) Pepth (m) Area (m²) Opeth (m) Area (m²) Pepth (m) Area (m²) 0.000 250.0 Opeth (m) Area (m²) Pepth (m) Area (m²) 0.000 250.0 Opeth (m) Area (m²) Pepth (m) Area (m²) Opeth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²) Opeth (m²) Inf. Area (m²) Inf. Area (m²) Opeth							
Complex Structure Tark or Pond Invert Level (m) 59.000 Opth (n) Area (n²) peth (n) Area (n²) 0.000 250.0 0.500 450.0 0.501 0.0 Cellular Storage Invert Level (m) 59.000 Safety Factor 2.0 Infiltration Coefficient Sale (m/hr) 0.00000 Porosity 0.30 Intert Level (m) Pepth (n) Area (n²) Inf. Area (n²) Opth (n) Area (n²) pepth (n) Area (n²) Inf. Area (n²) Opth (n) Area (n²) pepth (n) Area (n²) Inf. Area (n²) 0.000 1635.0 0.0 0.501 0.0 0.0 0.500 1635.0 0.0 0.501 0.0 0.0 Diameter (m2) Setter (23-5200-1500-5200 0.500 1635.0 0.0 1.500 Design Flow (1/s) 52.0 Flush-Flow Calculated 0.500 1635.0 0.0 1.500 Design Flow (1/s) 52.0 Flush-Flow 1.500 Diameter (m0) 373 1.500 1.500 Diameter (m0) 373 1.500 1.500	N	Model Det	ails				
Complex Structure Tark or Pond Invert Level (m) 59.000 Opth (n) Area (n²) peth (n) Area (n²) 0.000 250.0 0.500 450.0 0.501 0.0 Cellular Storage Invert Level (m) 59.000 Safety Factor 2.0 Infiltration Coefficient Sale (m/hr) 0.00000 Porosity 0.30 Intert Level (m) Pepth (n) Area (n²) Inf. Area (n²) Opth (n) Area (n²) pepth (n) Area (n²) Inf. Area (n²) Opth (n) Area (n²) pepth (n) Area (n²) Inf. Area (n²) 0.000 1635.0 0.0 0.501 0.0 0.0 0.500 1635.0 0.0 0.501 0.0 0.0 Diameter (m2) Setter (23-5200-1500-5200 0.500 1635.0 0.0 1.500 Design Flow (1/s) 52.0 Flush-Flow Calculated 0.500 1635.0 0.0 1.500 Design Flow (1/s) 52.0 Flush-Flow 1.500 Diameter (m0) 373 1.500 1.500 Diameter (m0) 373 1.500 1.500	Storage is On	line Cover	Level	(m) 59.500			
Tank or PondInvert Level (m) 59.000 $Popth (n) Area (n^2) Popth (n) Area (n^2) Popth (n) Area (n^2) 0.000 250.0 0.500 450.0 0.501 0.0Cellular StorageInvert Level (m) 59.000 Safety Factor 2.0Infitration Coefficient Sale (m/hr) 0.00000 Porosity 0.30Infitration Coefficient Sale (m/hr) 0.00000Depth (m) Area (n²) Inf. Area (n²) Popth (m) Area (n²) Inf. Area (n²)0.000 1635.0 0.00.501 0.0 0.00.501 0.0 0.0O.000 1635.0 0.0O.000 1635.0 0.0Diamete (m2) Popth (m) Area (n²) Inf. Area (n²)0.000 0.501 0.0 0.00.000 0.501 0.0 0.0O.000 1635.0 0.0O.000 1635.0 0.0O.000 0.501 0.0 0.0Diamete (m2) 0.501 0.0 0.0Dist Power (1/s) 0.501 0.0 0.0Dist Power (1/s) 0.501 0.0 0.0Dist Power (1/s) 0.501 0.0 0.0Dist Colspan="2">Colspan="2"$			20701	(, 551500			
Invert Level (m) 59.000 Depth (m) Area (m²) Depth (m) Area (m²) Depth (m) Area (m²) 0.000 250.0 0.500 450.0 0.501 0.0 Cellular Storage Invert Level (m) 59.000 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.30 Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²) 0.000 1635.0 0.0 0.501 0.0 O.000 1635.0 0.0 Hydro-Brake@ Optimum Outflow Control Hydro-Brake@ Optimum Outflow Control Unit Reference MD-SHE-0293-5200-1500-5200 Design Flow (1/s) Diameter (mm) 1.500 Design Flow (1/s) Biameter (mm) 293 Invert Level (m) 57.800 Minimum Outlet Pipe Diameter (mm) 375 Suggested Manhole Diameter (mm) 2100 Control Point (Calculated) 1.500 52.0 Flue+Flow 0.508 52.0 Suggested M	Con	mplex Str	ucture				
Invert Level (m) 59.000 Depth (m) Area (m²) Depth (m) Area (m²) Depth (m) Area (m²) 0.000 250.0 0.500 450.0 0.501 0.0 Cellular Storage Invert Level (m) 59.000 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.30 Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²) 0.000 1635.0 0.0 0.501 0.0 O.000 1635.0 0.0 Hydro-Brake@ Optimum Outflow Control Hydro-Brake@ Optimum Outflow Control Unit Reference MD-SHE-0293-5200-1500-5200 Design Flow (1/s) Diameter (mm) 1.500 Design Flow (1/s) Biameter (mm) 293 Invert Level (m) 57.800 Minimum Outlet Pipe Diameter (mm) 375 Suggested Manhole Diameter (mm) 2100 Control Point (Calculated) 1.500 52.0 Flue+Flow 0.508 52.0 Suggested M							
Invert Level (m) 59.000 Depth (m) Area (m²) Depth (m) Area (m²) Depth (m) Area (m²) 0.000 250.0 0.500 450.0 0.501 0.0 Cellular Storage Invert Level (m) 59.000 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.30 Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²) 0.000 1635.0 0.0 0.501 0.0 O.000 1635.0 0.0 Hydro-Brake@ Optimum Outflow Control Hydro-Brake@ Optimum Outflow Control Unit Reference MD-SHE-0293-5200-1500-5200 Design Flow (1/s) Diameter (mm) 1.500 Design Flow (1/s) Biameter (mm) 293 Invert Level (m) 57.800 Minimum Outlet Pipe Diameter (mm) 375 Suggested Manhole Diameter (mm) 2100 Control Point (Calculated) 1.500 52.0 Flue+Flow 0.508 52.0 Suggested M		Tank or I	ond				
Depth (m) Area (m²) Depth (m) Area (m²) Depth (m) Area (m²) 0.000 250.0 0.500 450.0 0.501 0.0 Cellular Storage Invert Level (m) 59.000 Safety Factor 2.0 Intvert Level (m) 59.000 Safety Factor 2.0 Infiltration Coefficient Sade (m/hr) 0.00000 Depth (m) Area (m²) Int. Area (m²) Depth (m) Area (m²) Inf. Area (m²) 0.000 1635.0 0.0 0.501 0.0 0.0 One figure Backe® Optimum Outflow Control Unit Reference MD-SHE-0293-5200-1500-5200 Design Flow (1/s) 52.0 Figure Plaw Calculated Objective Minimise upstream Surface Sump Available Yes Diameter (mm) 375 Sugested Manhole Diameter (mm) 2100 Control Point Head (n) Flow (1/s) Control Points Head (m) Flow (1/s) Sugested Manhole Diameter (mm) 2100 <td col<="" td=""><td></td><td></td><td>ona</td><td></td><td></td><td></td></td>	<td></td> <td></td> <td>ona</td> <td></td> <td></td> <td></td>			ona			
0.000 250.0 0.500 450.0 0.501 0.0 Cellular Storage Invert Level (m) 59.000 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Person (m/hr) 0.00000 Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²) 0.000 0.501 0.0 0.501 0.0 Optimum Outflow Control Hydro-Brake@ Optimum Outflow Control Unit Reference MD-SHE-0293-5200-1500-5200 Design Head (m) 1.500 Design Flow (1/s) 52.0 Flush-Flow Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 2100 Invert Level (m) 57.800 Minimum Outlet Pipe Diameter (mm) 2100 Invert Level (m) 57.800	Inve	rt Level (m	ı) 59.00	0			
0.000 250.0 0.500 450.0 0.501 0.0 Cellular Storage Invert Level (m) 59.000 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Person (m/hr) 0.00000 Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²) 0.000 0.501 0.0 0.501 0.0 Optimum Outflow Control Hydro-Brake@ Optimum Outflow Control Unit Reference MD-SHE-0293-5200-1500-5200 Design Head (m) 1.500 Design Flow (1/s) 52.0 Flush-Flow Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 2100 Invert Level (m) 57.800 Minimum Outlet Pipe Diameter (mm) 2100 Invert Level (m) 57.800	Denth (m) area (m^2)	oth (m) ൔ∽<	a (m2)∣	Depth (m)	Area (m2)		
Cellular Storage Invert Level (m) 59.000 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.30 Infiltration Coefficient Side (m/hr) 0.00000 Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²) 0.000 1635.0 0.0 0.501 0.0 0.0 One of the set of				Depth (m)	Area (m)		
Invert Level (m) 59.000 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Depth (m) Area (m ²) Inf. Area (m ²) Depth (m) Area (m ²) Inf. Area (m ²) 0.000 1635.0 0.0 0.500 1635.0 0.0 Hydro-Brake@ Optimum Outflow Control Unit Reference MD-SHE-0293-5200-1500-5200 Design Head (m) 1.500 Design Flow (1/s) 52.0 Flush-Flo ^w Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 293 Invert Level (m) 57.800 Minimum Outlet Pipe Diameter (mm) 375 Suggested Manhole Diameter (mm) 375 Suggested Manhole Diameter (mm) 2100 Control Points Head (m) Flow (1/s) Design Point (Calculated) 1.500 52.0 Flush-Flo ^w 0.508 52.0 Kick-Flo@ 1.071 44.2 Mean Flow over Head Range - 43.8 The hydrological culations have been based on the Head/Discharge relationship for th Hydro-Brake@ Optimum@ be utilised then these storage routing calculations will be	0.000 250.0	0.500	450.0	0.501	0.0		
Invert Level (m) 59.000 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Depth (m) Area (m ²) Inf. Area (m ²) Depth (m) Area (m ²) Inf. Area (m ²) 0.000 1635.0 0.0 0.500 1635.0 0.0 Hydro-Brake@ Optimum Outflow Control Unit Reference MD-SHE-0293-5200-1500-5200 Design Head (m) 1.500 Design Flow (1/s) 52.0 Flush-Flo ^w Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 293 Invert Level (m) 57.800 Minimum Outlet Pipe Diameter (mm) 375 Suggested Manhole Diameter (mm) 375 Suggested Manhole Diameter (mm) 2100 Control Points Head (m) Flow (1/s) Design Point (Calculated) 1.500 52.0 Flush-Flo ^w 0.508 52.0 Kick-Flo@ 1.071 44.2 Mean Flow over Head Range - 43.8 The hydrological culations have been based on the Head/Discharge relationship for th Hydro-Brake@ Optimum@ be utilised then these storage routing calculations will be	Ce	llular St	orage				
Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.30 Infiltration Coefficient Side (m/hr) 0.00000 Porosity 0.30 Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²) 0.000 1635.0 0.0 0.500 1635.0 0.0 0.500 1635.0 0.0 0.500 1635.0 0.0 0.500 1635.0 0.0 0.500 1635.0 0.0 0.500 1635.0 0.0 0.500 1635.0 0.0 0.500 1635.0 0.0 0.500 1635.0 0.0 0.500 1635.0 0.0 Unit Reference MD-SHE-0293-5200-1500-5200 Design Head (m) Design Flow (1/s) 52.0 Flush-Flo* Calculated Objective Minimise upstream storage Application Sump Available Yes Diameter (mm) 293 Invert Level (m) 57.800 Minimum Outlet Pipe Diameter (mm) 2100 Control Points Head (m) Flow (1/s) Design Point (Calculated) 1.500	<u> </u>		<u>erage</u>				
Infiltration Coefficient Side (m/hr) 0.0000 Depth (m) Area (m²) Inf. Area (m²) 0.000 1635.0 0.500 1635.0 0.500 1635.0 0.500 1635.0 0.000 1635.0 0.500 1635.0 0.500 1635.0 0.500 1635.0 0.500 1635.0 0.500 1635.0 0.500 1635.0 0.500 1635.0 0.500 1635.0 0.500 1635.0 0.500 1635.0 0.500 1635.0 0.500 1635.0 0.500 1635.0 0.500 1635.0 0.500 1635.0 0.501 0.0 0.502 Flush-Flo* Calculated 0bjective Minimum Outlet Pipe Diameter (mm) 200 Minimum Outlet Pipe Diameter (mm) 2100 Control Points Head (m) Flow (l/s) Design Point (Calculated) 1.500 52.0 Flush-Flo* 0.508 52.0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²) 0.000 1635.0 0.0 0.501 0.0 0.0 0.500 1635.0 0.0 0.501 0.0 0.0 Hydro-Brake@ Optimum Outflow Control Unit Reference MD-SHE-0293-5200-1500-5200 Design Head (m) 1.500 Design Flow (1/s) 52.0 Flush-Flo ^M Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 293 Invert Level (m) 57.800 Minimum Outlet Pipe Diameter (mm) 375 Suggested Manhole Diameter (mm) 2100 Control Points Flush-Flo [®] 0.508 Suggested Manhole Diameter (mm) 1.071 Application 43.8					rosity 0.3	0	
0.000 1635.0 0.0 0.501 0.0 0.0 Hydro-Brake® Optimum Outflow Control Unit Reference MD-SHE-0293-5200-1500-5200 Design Head (m) 1.500 Design Flow (1/s) 52.0 Flush-Flo ^m Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 293 Invert Level (m) 57.800 Minimum Outlet Pipe Diameter (mm) 375 Suggested Manhole Diameter (mm) 2100 Control Points Head (m) Flow (1/s) Design Point (Calculated) 1.500 52.0 Flush-Flo ^m 0.508 52.0 Kck-Flo@ 1.071 44.2 Mean Flow over Head Range - 43.8 The hydrological calculations have been based on the Head/Discharge relationship for th Hydro-Brake@ Optimum as specified. Should another type of control device other than a Hydro-Brake@ Optimum be utilised then these storage routing calculations will be		SIGE (III / III) 0.000	00			
0.500 1635.0 0.0 Hydro-Brake® Optimum Outflow Control Unit Reference MD-SHE-0293-5200-1500-5200 Design Head (m) 1.500 Design Flow (1/s) 52.0 Flush-Flo [™] Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 293 Invert Level (m) 57.800 Minimum Outlet Pipe Diameter (mm) 375 Suggested Manhole Diameter (mm) 2100 Control Points Head (m) Flow (1/s) Design Point (Calculated) 1.500 52.0 Flush-Flo [™] 0.508 52.0 Kick-Flo® 1.071 44.2 Mean Flow over Head Range - 43.8 The hydrological calculations have been based on the Head/Discharge relationship for th Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be	Depth (m) Area (m²) Inf. Are	ea (m²) De <u>r</u>	oth (m)	Area (m²)	Inf. Area	(m ²)	
Hydro-Brake@ Optimum Outflow Control Unit Reference MD-SHE-0293-5200-1500-5200 Design Head (m) 1.500 Design Flow (1/s) 52.0 Flush-FloW Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 293 Invert Level (m) 57.800 Minimum Outlet Pipe Diameter (mm) 2100 Control Points Head (m) Flow (1/s) Design Point (Calculated) 1.500 52.0 Flush-Flo [®] 0.508 52.0 Kick-Flo@ 1.071 44.2 Mean Flow over Head Range - 43.8 The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake@ Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum@ be utilised then these storage routing calculations will be	0.000 1635.0	0.0	0.501	0.0		0.0	
Unit Reference MD-SHE-0293-5200-1500-5200 Design Head (m) 1.500 Design Flow (1/s) 52.0 Flush-Flo ^m Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 293 Invert Level (m) 57.800 Minimum Outlet Pipe Diameter (mm) 375 Suggested Manhole Diameter (mm) 2100 Control Points Head (m) Flow (1/s) Design Point (Calculated) 1.500 52.0 Flush-Flo ^m 0.508 52.0 Kick-Flo@ 1.071 44.2 Mean Flow over Head Range - 43.8 The hydrological calculations have been based on the Head/Discharge relationship for th Hydro-Brake@ Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum% be utilised then these storage routing calculations will be	0.500 1635.0	0.0					
Unit Reference MD-SHE-0293-5200-1500-5200 Design Head (m) 1.500 Design Flow (1/s) 52.0 Flush-Flo ^m Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 293 Invert Level (m) 57.800 Minimum Outlet Pipe Diameter (mm) 375 Suggested Manhole Diameter (mm) 2100 Control Points Head (m) Flow (1/s) Design Point (Calculated) 1.500 52.0 Flush-Flo ^m 0.508 52.0 Kick-Flo@ 1.071 44.2 Mean Flow over Head Range - 43.8 The hydrological calculations have been based on the Head/Discharge relationship for th Hydro-Brake@ Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum% be utilised then these storage routing calculations will be	Under Drock of	Ontimum	0.1+ fla	Contro	1		
Design Head (m) 1.500 Design Flow (1/s) 52.0 Flush-Flo™ Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 293 Invert Level (m) 57.800 Minimum Outlet Pipe Diameter (mm) 375 Suggested Manhole Diameter (mm) 2100 Control Points Head (m) Flow (1/s) Design Point (Calculated) 1.500 52.0 Flush-Flo™ 0.508 52.0 Kick-Flo® 1.071 44.2 Mean Flow over Head Range - 43.8 The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake@ Optimum as specified. Should another type of control device other than a Hydro-Brake@ Optimum@ be utilised then these storage routing calculations will be	HYDIO-BLAKE®	Οριτιιαιι	OULIIC	W CONCEO	<u> </u>		
Design Flow (1/s) 52.0 Flush-Flo™ Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 293 Invert Level (m) 57.800 Minimum Outlet Pipe Diameter (mm) 375 Suggested Manhole Diameter (mm) 2100 Control Points Head (m) Flow (1/s) Design Point (Calculated) 1.500 52.0 Flush-Flo™ 0.508 52.0 Kick-Flo® 1.071 44.2 Mean Flow over Head Range - 43.8 The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be	Unit	Reference	MD-SHE	-0293-5200	-1500-5200		
Flush-Flo [™] Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 293 Invert Level (m) 57.800 Minimum Outlet Pipe Diameter (mm) 375 Suggested Manhole Diameter (mm) 2100 Control Points Head (m) Flow (l/s) Design Point (Calculated) 1.500 52.0 Flush-Flo [™] 0.508 52.0 Kick-Flo@ 1.071 44.2 Mean Flow over Head Range - 43.8 The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake@ Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum@ be utilised then these storage routing calculations will be	-						
Objective ApplicationMinimise upstream storage SurfaceApplicationSurfaceSump AvailableYesDiameter (mm)293Invert Level (m)57.800Minimum Outlet Pipe Diameter (mm)375Suggested Manhole Diameter (mm)2100Control PointsHead (m) Flow (1/s)Design Point (Calculated)1.50052.0Flush-Flo™0.50852.0Kick-Flo®1.07144.2Mean Flow over Head Range-43.8The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum% be utilised then these storage routing calculations will be				,			
ApplicationSurfaceSump AvailableYesDiameter (mm)293Invert Level (m)57.800Minimum Outlet Pipe Diameter (mm)375Suggested Manhole Diameter (mm)2100Control PointsHead (m) Flow (l/s)Design Point (Calculated)1.50052.0Flush-Flow0.50852.0Kick-Flo@1.07144.2Mean Flow over Head Range-43.8The hydrological calculations have been based on the Head/Discharge relationship for theHydro-Brake@ Optimum as specified. Should another type of control device other than aHydro-Brake Optimum@ be utilised then these storage routing calculations will be			Minim				
Diameter (mm) 293 Invert Level (m) 57.800 Minimum Outlet Pipe Diameter (mm) 375 Suggested Manhole Diameter (mm) 2100 Control Points Head (m) Flow (1/s) Design Point (Calculated) 1.500 52.0 Flush-Flo™ 0.508 52.0 Kick-Flo® 1.071 44.2 Mean Flow over Head Range - 43.8 The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be	A	-			-		
Invert Level (m) 57.800 Minimum Outlet Pipe Diameter (mm) 375 Suggested Manhole Diameter (mm) 2100 Control Points Head (m) Flow (1/s) Design Point (Calculated) 1.500 52.0 Flush-Flo™ 0.508 52.0 Kick-Flo® 1.071 44.2 Mean Flow over Head Range - 43.8 The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be	Sump	Available			Yes		
Minimum Outlet Pipe Diameter (mm) 375 Suggested Manhole Diameter (mm) 2100 Control Points Head (m) Flow (1/s) Design Point (Calculated) 1.500 52.0 Flush-Flo™ 0.508 52.0 Kick-Flo® 1.071 44.2 Mean Flow over Head Range - 43.8 The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be							
Suggested Manhole Diameter (mm) 2100 Control Points Head (m) Flow (l/s) Design Point (Calculated) 1.500 52.0 Flush-Flo™ 0.508 52.0 Kick-Flo® 1.071 44.2 Mean Flow over Head Range - 43.8 The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be							
Control Points Head (m) Flow (1/s) Design Point (Calculated) 1.500 52.0 Flush-Flo™ 0.508 52.0 Kick-Flo® 1.071 44.2 Mean Flow over Head Range - 43.8 The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be							
Design Point (Calculated) 1.500 52.0 Flush-Flo™ 0.508 52.0 Kick-Flo® 1.071 44.2 Mean Flow over Head Range - 43.8 The hydrological calculations have been based on the Head/Discharge relationship for th Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be	buggebeed maintere bid				2100		
Flush-Flo™0.50852.0Kick-Flo®1.07144.2Mean Flow over Head Range-43.8The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be	Control Po	ints	Head (m) Flow (1/	s)		
Flush-Flo™0.50852.0Kick-Flo®1.07144.2Mean Flow over Head Range-43.8The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be	Design Point (Ca	alculated)	1.50	0 52	.0		
Mean Flow over Head Range - 43.8 The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be			0.50	8 52	.0		
The hydrological calculations have been based on the Head/Discharge relationship for th Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be			1.07				
Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be	Mean Flow over H	ieaa Kange		- 43	.8		
Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be	The hydrological calculations have b	een based	on the H	Head/Discha	arge relati	onship for th	
Hydro-Brake Optimum ${ m I\!R}$ be utilised then these storage routing calculations will be							
invalidated							
©1982-2018 Innovyze	©198	32-2018 I	nnovyz	е			

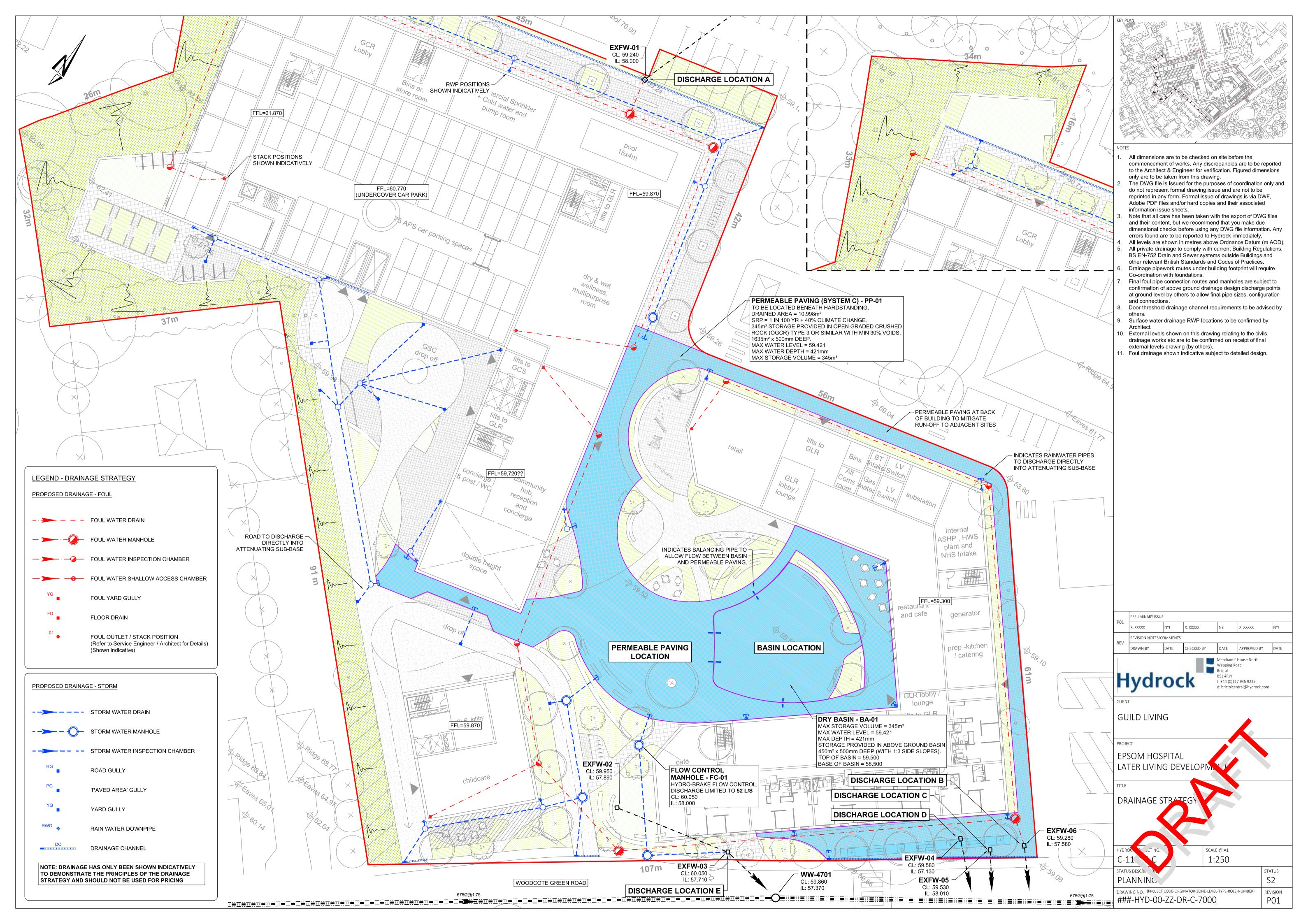
Hydrock Consultants Ltd		Page 5
· · · · · · · · · · · · · · · · · · ·		
Date 04/12/2019 10:36	Designed by jasonmagee	Drainage
File Attenuation (Complex).SRCX	Checked by	Diamage
Innovyze	Source Control 2018.1.1	*

Hydro-Brake® Optimum Outflow Control

Depth (m)	Flow (l/s)						
0.100	9.0	1.200	46.7	3.000	72.7	7.000	109.8
0.200	30.2	1.400	50.3	3.500	78.3	7.500	113.5
0.300	49.6	1.600	53.6	4.000	83.6	8.000	117.2
0.400	51.5	1.800	56.8	4.500	88.5	8.500	120.7
0.500	52.0	2.000	59.7	5.000	93.2	9.000	124.1
0.600	51.7	2.200	62.5	5.500	97.6	9.500	127.4
0.800	50.3	2.400	65.2	6.000	101.8		
1.000	46.8	2.600	67.8	6.500	105.9		
					·		

Appendix G

Overland Flow Routes



Appendix H

Drainage Strategy Layout

Appendix J

Correspondence

Mr Jason Magee Hydrock By email to JasonMagee@hydrock.com

Wastewater pre-planning Our ref DS6064489–DTS 62970

11 September 2019

Pre-planning enquiry: Epsom Hospital, Dorking Rd, Epsom, Surrey, KT18 7EG

Dear Mr Magee,

Thank you for providing information on your Redevelopment of Hospital into retirement. For Connection 1 to the north into 380mm foul sewer in Dorking Rd; Existing: Surf and foul water sewer connections draining 6400sqm surface and 201 hospital beds by gravity. Proposed: no surface water discharge and 335 beds retirement by gravity. Connection 2 to the South into 675mm foul at Woodcote Green; Existing 5,929sqm surface and 468 hospital beds by gravity. Proposed 334 retirement beds and same surface water drainage regime as before (5,929sqm)

Foul Water

We're pleased to confirm that there will be sufficient foul water capacity in our sewerage network to serve your development, so long as your phasing follows the timescale you've suggested.

This confirmation is valid for 12 months or for the life of any planning approval that this information is used to support, to a maximum of three years.

Surface Water

We confirm that there will be sufficient capacity in our sewerage network to accept the surface water discharge rate provided as part of the enquiry, however this does not preclude the requirement as set out by Policy 5.13 of the London Plan. Management of surface water from the site should follow policy 5.13 of the London Plan, development should 'aim to achieve greenfield run-off rates' utilising Sustainable Drainage and where this is not possible information explaining why it is not possible should be provided to both the LLFA and Thames Water. Typically greenfield run off rates of 5I/s/ha should be aimed for using the drainage hierarchy. The hierarchy lists the preference for surface water disposal as follows; Store Rainwater for later use > Use infiltration techniques, such as porous surfaces in non-clay areas > Attenuate rainwater in ponds or open water features for gradual release > Discharge rainwater direct to a watercourse > Discharge rainwater direct to a surface water sewer/drain > Discharge rainwater to the combined sewer.

To reduce flood risk from the sewers, the developer should aim to achieve greenfield runoff rates and at least 50% reduction for all storm events

What happens next?

You'll need to keep us informed of any changes to your design – for example, an increase in the number or density of homes. Such changes could mean there is no longer sufficient capacity.

Please note that we may contact you if we need to carry out any network modelling associated with this. The modelling would be done at our cost and within your timescales.

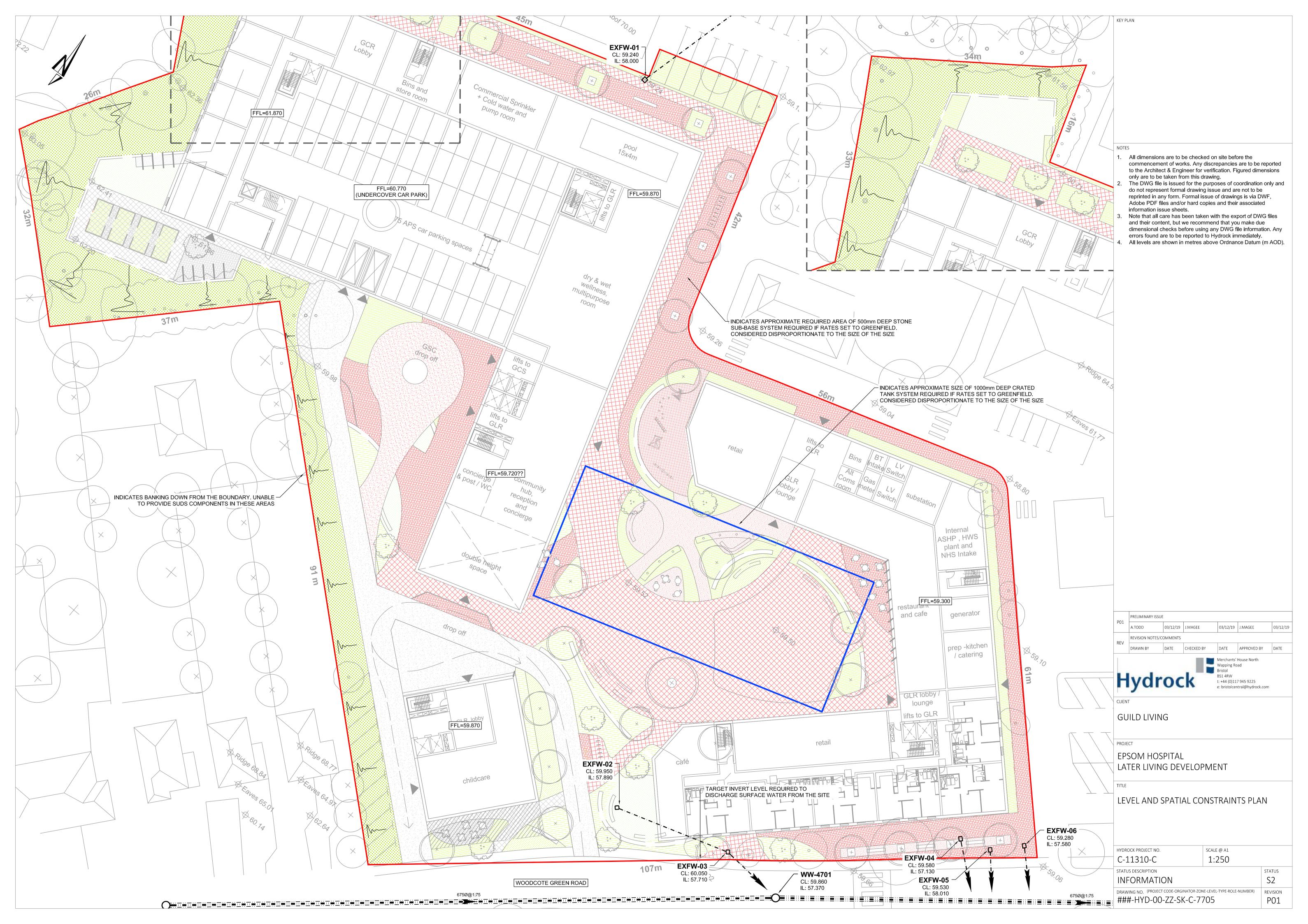
Please make sure you submit your connection application, giving us at least 21 days' notice of the date you wish to make your new connection/s.

If you've any further questions, please contact me on the numbers below.

Yours sincerely

Jose Varela

Developer Services – Adoptions Engineer Mobile 07747 640250 Landline 02035 778753 jose.varela@thameswater.co.uk Clearwater Court, Vastern Road, Reading, RG1 8DB


Find us online at <u>developers.thameswater.co.uk</u>

Appendix K

Constraints Plan / Calculations

Iydrock	Con	sult	ants	Ltd							Page 1
ate 04/	/12/	2019	9 09:4	7		Desi	aned by	/ jasonma	agee		Micro
ile Att					in		ked by	Jabonine	Jee		Drainac
nnovyze				0110 01 01			-	rol 2018	3.1.1		
		Sum	mary o					Return d	Period	(+40%)	-
		Stori	m	Max	Max	м	ax	Max	Max	Max	Status
		Event	t	Level (m)	Depth (m)		ration (/s)	Control Σ (l/s)	Outflow (1/s)	Volume (m³)	
						•		• • •			
				58.242			0.0	5.3	5.3	263.5	ОК
				58.324			0.0	5.3 5.3	5.3 5.3	352.3	ОК ОК
				58.409 58.493			0.0	5.3 5.3	5.3	445.6 537.2	O K O K
				58.537			0.0	5.3	5.3		0 K
				58.563			0.0	5.3	5.3		0 K
				58.596			0.0	5.3	5.3	649.1	ОК
				58.613			0.0	5.3	5.3	667.9	0 K
				58.621			0.0	5.3	5.3	676.6	0 K
				58.621			0.0	5.3	5.3		0 K
				58.614			0.0	5.3	5.3	668.7	O K
1				58.578			0.0	5.3	5.3	629.7	0 K
				58.578			0.0	5.3	5.3	585.7	0 K
				58.538			0.0	5.3	5.3	585.7	O K
				58.503			0.0	5.3	5.3	547.9 475.5	O K
				58.437			0.0	5.3	5.3	4/5.5	O K
				58.374			0.0	5.3	5.3	406.8 344.3	0 K 0 K
				58.316			0.0	5.3	5.3		O K
				58.204			0.0	5.3	5.3		0 K
τt				58.210			0.0	5.3	5.3		O K
				Storm		Rain		Discharge			
				Event	(m	m/hr)	Volume	Volume	(mins)	
							(m³)	(m ³)			
			15	min Sur	nmer 13	1.851	0.0	271.0)	26	
				min Sur		8.566	0.0	364.3		41	
			60	min Sur	nmer 5	6.713	0.0	466.5	5	70	
			120	min Sur	nmer 3	5.004	0.0	576.2	2 1	30	
			180	min Sur	nmer 2	5.973	0.0	641.6	5 1	88	
			240	min Sur	nmer 2	0.877	0.0	687.6	5 2	248	
			360	min Sur	nmer 1	5.365	0.0	759.5	5 3	866	
			480	min Sur	nmer 1	2.341	0.0	813.2	2 4	186	
			600	min Sur	nmer 1	0.402	0.0	857.0) 6	504	
			720	min Sur	nmer	9.042	0.0	884.0) 7	724	
			960	min Sur	nmer	7.241	0.0	883.2	2 9	962	
				min Sur		5.284	0.0	873.6	5 12	230	
				min Sur		3.848	0.0	1140.9) 15	584	
				min Sur		3.068	0.0	1213.8		972	
					mor	2.226	0.0	1320.2	2 27	772	
			4320	min Sur	lillet						
			5760	min Sur	nmer	1.771	0.0	1400.1	. 35	576	
			5760 7200	min Sur min Sur	mmer mmer	1.483	0.0	1466.9	9 43	328	
			5760 7200 8640	min Sur min Sur min Sur	nmer nmer nmer	1.483 1.284	0.0 0.0 0.0	1466.9 1524.1	9 43 . 51	328 104	
			5760 7200 8640 10080	min Sur min Sur	nmer nmer nmer nmer	1.483 1.284 1.137	0.0	1466.9) 43 51 5 58	328	

©1982-2018 Innovyze

vdrock Co	nsul	tants	Ltd		1					Page 2
	(0.0.1									_ Micro
te 04/12					Desi	Drainad				
le Atten	uati	on – C	onstra	in		ked by				
novyze					Sour	ce Con	trol 201	8.1.1		
	G			1	10		Determine	Devial	(. 408)	
	Sur	nmary	oi Res	ults I	or I	JU year	Return	Period	(+40%)	-
	Stor	m	Max	Max	M	lax	Max	Max	Max	Status
	Even		Level				Control D			
			(m)	(m)	(1	/s)	(1/s)	(l/s)	(m³)	
2		772	F0 264	0 264		0 0	F D	F D	206.2	0. "
		Winter Winter				0.0	5.3 5.3	5.3 5.3	396.3 502.3	ОК ОК
		Winter				0.0	5.3	5.3		ОК
		Winter				0.0	5.3	5.3	663.7	ОК
24) min	Winter	58.641	0.641		0.0	5.3	5.3	698.3	ОК
		Winter				0.0	5.3	5.3	745.2	O K
		Winter				0.0	5.3	5.3	772.7	ОК
		Winter				0.0	5.3	5.3		ОК
		Winter Winter				0.0	5.3	5.3		OK
		Winter				0.0 0.0	5.3 5.3	5.3 5.3		<mark>o k</mark> o k
		Winter				0.0	5.3	5.3		O K
		Winter				0.0	5.3	5.3		ОК
432) min	Winter	58.487	0.487		0.0	5.3	5.3	530.5	ОК
576) min	Winter	58.388	0.388		0.0	5.3	5.3	423.0	ОК
720) min	Winter	58.301	0.301		0.0	5.3	5.3	327.4	O K
		Winter				0.0	5.3	5.3		
1008) min	Winter	58.162	0.162		0.0	5.3	5.3	176.0	ОК
			Storm Event		Rain m/hr)	Flooded Volume (m³)	l Discharg Volume (m³)	e Time-Pe (mins		
		2.0				0 0	400	1	4.1	
			min Wi min Wi		38.566 56.713	0.0 0.0			41 70	
			min Wi		35.004	0.0			128	
			min Wi		25.973	0.0			186	
			min Wi		20.877	0.0	770.		244	
			min Wi		15.365	0.0			362	
			min Wi		12.341	0.0			478 504	
			min Wi min Wi		0.402 9.042	0.0 0.0			594 710	
			min Wi		7.241	0.0			938	
			min Wi		5.284	0.0			384	
			min Wi		3.848	0.0			740	
			min Wi		3.068	0.0	1359.	4 23	168	
			min Wi		2.226	0.0			032	
			min Wi		1.771	0.0			364	
			min Wi		1.483	0.0			524	
			min Wi min Wi		1.284 1.137	0.0 0.0			368 056	

Hydrock Consultants Ltd		Page 3
· ·		Micco
Date 04/12/2019 09:47	Designed by jasonmagee	Micro Drainage
File Attenuation - Constrain	Checked by	Dialija
Innovyze	Source Control 2018.1.1	
	infall Details	
Rainfall Model Return Period (years)	FSR Winter Storms Y 100 Cv (Summer) 0.7	es 50
	and and Wales Cv (Winter) 0.8	
M5-60 (mm)	· · · · · · · · · · · · · · · · · · ·	15
Ratio R Summer Storms	0.350 Longest Storm (mins) 100 Yes Climate Change % +	80 40
Summer Storms	Tes crimate change 6	10
<u>Tin</u>	ne Area Diagram	
Tota	al Area (ha) 1.099	
Time (mins) Area Ti From: To: (ha) Fro	me (mins) Area Time (mins) Area om: To: (ha) From: To: (ha)	
0 4 0.366	4 8 0.366 8 12 0.366	
0 10.500	1 0 0.500 0 12 0.500	
©198	2-2018 Innovyze	

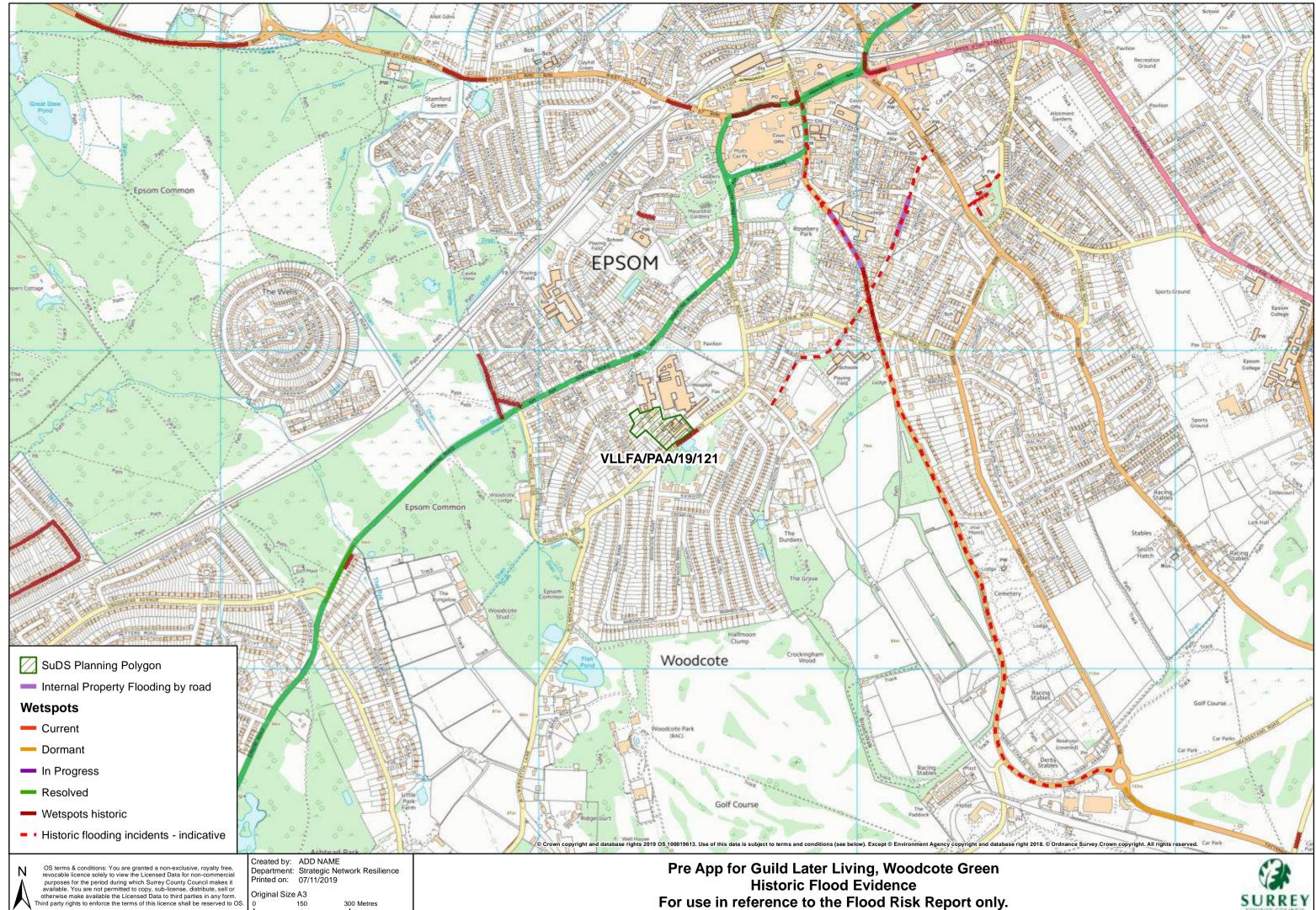
ate 04/12/2019	00.17		Degigner	l br inc	000000		Aicro
			Designed		onmagee)rainaqı
'ile Attenuatio	on – Cor	strain	. Checked	by			J
nnovyze			Source (Control	2018.1.1		
			Model Det	ails			
	5	torage is	Online Cover	c Level (1	m) 59.500		
		<u>Cellu</u>	lar Storag	e Struct	ture		
		Coefficier	vert Level (m nt Base (m/h: nt Side (m/h:	r) 0.0000		tor 2.0 ity 0.30	
Depth (1	n) Area	(m²) Inf. A	area (m²) De	pth (m) A	Area (m²) Ini	E. Area (m²)
0.00		30.0	0.0	1.001	0.0	0.	0
1.00	0 36	30.0	0.0				
	ΗΣ	dro-Brake	e® Optimum	Outflow	v Control		
		Un	it Reference	MD-SHE-	0102-5700-170	0-5700	
			ign Head (m)			1.700	
			n Flow (l/s)			5.7	
			Flush-Flo"	и	Calo	culated	
			-		se upstream s	-	
			Application		2	Surface	
			mp Available			Yes	
			iameter (mm)			102	
Mit	imum Out		rt Level (m) iameter (mm)			57.800 150	
		_	iameter (mm)			1200	
		Control	Points	Head (m)	Flow (l/s)		
	_			1 500			
	Des	ign Point (Calculated)				
			Flush-Flo™ Kick-Flo®				
	Mea	n Flow over	Head Range		4.8		
	Mea	II FIOW OVEL	neau nange		1.0		
The hydrologica Hydro-Brake® Opt Hydro-Brake Opt invalidated	cimum as	specified.	Should and	other type	e of control	device oth	er than a
Depth (m) Flow	(l/s) D	epth (m) Fl	low (l/s) De	pth (m) H	Flow (l/s) De	epth (m) Fl	.ow (1/s)
0.100	3.4	1.200	4.8	3.000	7.4	7.000	11.1
0.200	4.8	1.400	5.2	3.500	8.0	7.500	11.5
0.300	5.2	1.600	5.5	4.000	8.5	8.000	11.8
0.400	5.3	1.800	5.9	4.500	9.0	8.500	12.2
0.500	5.3	2.000	6.1	5.000	9.5	9.000	12.5
0.600	5.3	2.200	6.4	5.500	9.9	9.500	12.9
0.800 1.000	4.8 4.5	2.400 2.600	6.7 7.0	6.000 6.500	10.3 10.7		
	·						

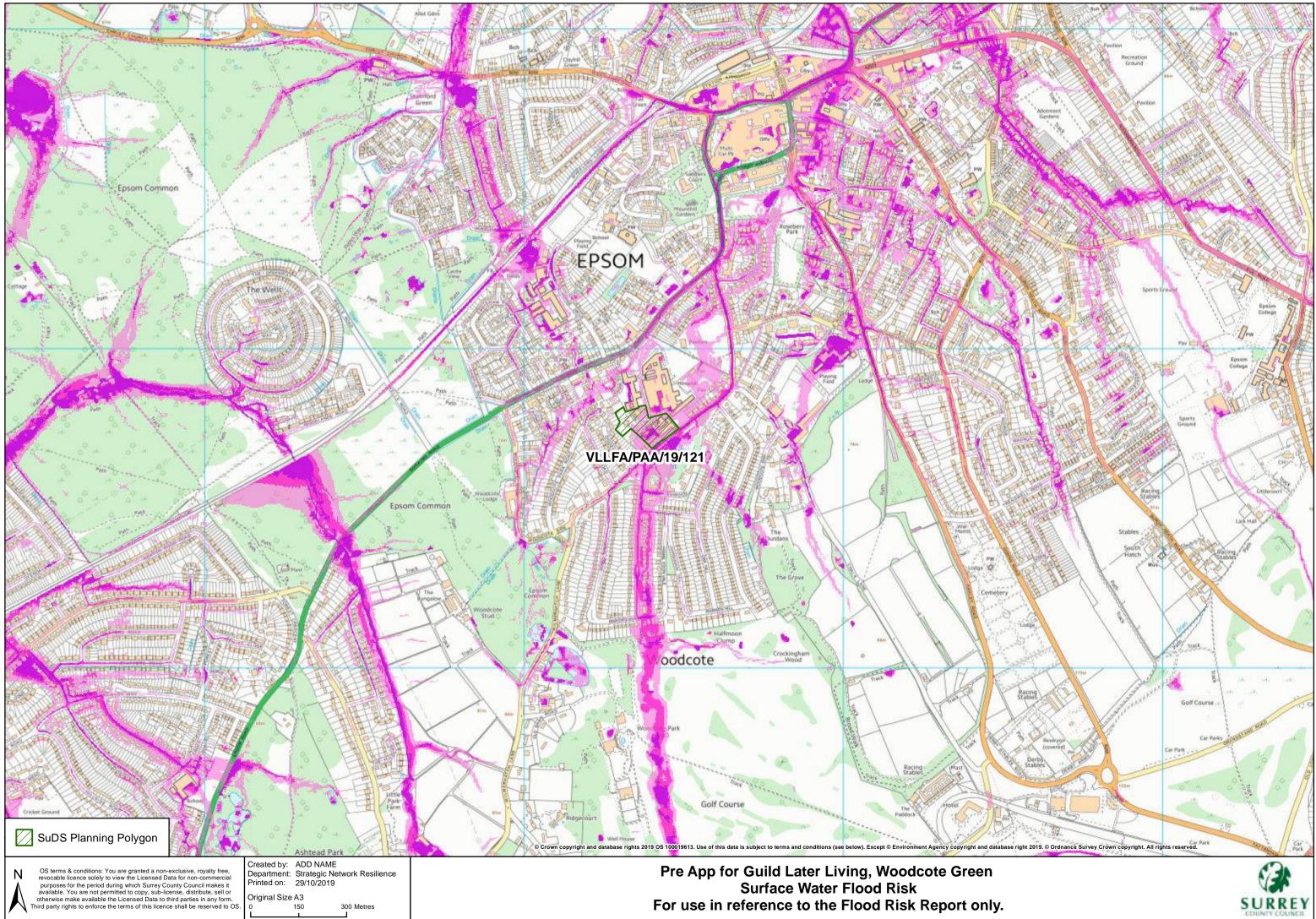
	sultants	Ltd		1					Page 1
									Micro
ate 04/12/	2019 09:4	1		Desid	ned b	y jasonm	agee		
'ile Attenu			v		ced by				Draina
		D.SIC	Λ		-		0 1 1		-
nnovyze				Sourd	ce con	trol 201	8.1.1		
	Commonation	of Dog	lta f	om 10	0	Dotum	Dowind	(. 40%)	
	Summary of	JI Rest	ilts i	or 10	u year	Return	Period	(+40%)	-
		п-	lf Dra	in Time	• 126	l minutes.			
		ne	all Dia.	111 I I I I I I I I I I I I I I I I I I	= • 120.	I MIIIUCES.			
	Storm	Max	Max	Ma	ax	Max	Max	Max	Status
	Event	Level	Depth	Infilt	ration	Control S	Outflow	Volume	
		(m)	(m)	(1/	′s)	(1/s)	(1/s)	(m³)	
15	min Summer	59 217	0 247		0.0	5.3	5.3	263.5	ОК
	min Summer				0.0	5.3	5.3	352.3	0 K
	min Summer				0.0	5.3	5.3	445.6	0 K
	min Summer				0.0	5.3	5.3	537.3	ок
	min Summer				0.0	5.3	5.3	584.7	ОК
	min Summer				0.0	5.3	5.3		ОК
	min Summer				0.0	5.3	5.3	649.4	ОК
	min Summer				0.0	5.3	5.3	668.5	ОК
600	min Summer	58.636	0.636		0.0	5.3	5.3	677.3	ОК
720	min Summer	58.638	0.638		0.0	5.3	5.3	679.4	ОК
960	min Summer	58.629	0.629		0.0	5.3	5.3	669.9	ОК
	min Summer				0.0	5.3	5.3		ОК
	min Summer				0.0	5.3	5.3	586.3	ОК
2880	min Summer	58.515	0.515		0.0	5.3	5.3	548.3	ОК
4320	min Summer	58.447	0.447		0.0	5.3	5.3	475.7	ОК
5760	min Summer	58.382	0.382		0.0	5.3	5.3	406.8	ОК
7200	min Summer	58.323	0.323		0.0	5.3	5.3	344.2	ОК
		EQ 270	0.270		0.0	5.3	F 2	287.8	ОК
8640	min Summer	50.270	0.2/0		0.0		5.3		
10080	min Summer	58.223	0.223		0.0	5.3	5.3	237.5	ΟK
10080		58.223	0.223						-
10080	min Summer	58.223	0.223		0.0	5.3	5.3	237.5	ΟK
10080	min Summer	58.223 58.278	0.223 0.278	Pair	0.0	5.3 5.3	5.3 5.3	237.5 296.2	ΟK
10080	min Summer	58.223 58.278 Storm	0.223 0.278		0.0 0.0 Flooded	5.3 5.3 Discharg	5.3 5.3 e Time-Pe	237.5 296.2	ΟK
10080	min Summer	58.223 58.278	0.223 0.278		0.0	5.3 5.3	5.3 5.3	237.5 296.2	ΟK
10080	min Summer min Winter	58.223 58.278 Storm Event	0.223 0.278 F (m	m/hr)	0.0 0.0 Flooded Volume (m ³)	5.3 5.3 Discharg Volume (m ³)	5.3 5.3 e Time-Pe (mins	237.5 296.2 eak	ΟK
10080	min Summer min Winter 15	58.223 58.278 Storm Event min Sur	0.223 0.278 F (m nmer 13	m/hr)	0.0 0.0 Flooded Volume (m ³) 0.0	5.3 5.3 Discharg Volume (m ³) 271.	5.3 5.3 e Time-Pe (mins 1	237.5 296.2 eak) 26	ΟK
10080	min Summer min Winter 15 30	58.223 58.278 Storm Event min Sur min Sur	0.223 0.278 F (m nmer 13 nmer 8	m/hr) 1.851 8.566	0.0 0.0 Flooded Volume (m ³) 0.0 0.0	5.3 5.3 Discharg Volume (m ³) 271. 364.	5.3 5.3 e Time-Pe (mins 1 4	237.5 296.2 eak) 26 41	ΟK
10080	min Summer min Winter 15 30 60	58.223 58.278 Storm Event min Sur min Sur min Sur	0.223 0.278 F (m nmer 13 nmer 8 nmer 5	m/hr) 51.851 58.566 56.713	0.0 0.0 Flooded Volume (m ³) 0.0 0.0 0.0	5.3 5.3 Discharg Volume (m ³) 271. 364. 467.	5.3 5.3 e Time-Pe (mins 1 4 1	237.5 296.2 eak) 26 41 70	ΟK
10080	min Summer min Winter 15 30 60 120	58.223 58.278 Storm Event min Sur min Sur min Sur min Sur	0.223 0.278 F (m nmer 13 nmer 8 nmer 5 nmer 3	m/hr) 1.851 8.566 6.713 5.004	0.0 0.0 Flooded Volume (m ³) 0.0 0.0 0.0 0.0	5.3 5.3 Discharg Volume (m ³) 271. 364. 467. 576.	5.3 5.3 e Time-Pe (mins 1 4 5 1	237.5 296.2 eak) 26 41 70 .30	ΟK
10080	min Summer min Winter 15 30 60 120 180	58.223 58.278 Storm Event min Sur min Sur min Sur min Sur min Sur	0.223 0.278 F (m nmer 13 nmer 8 nmer 5 nmer 3 nmer 2	m/hr) 1.851 8.566 6.713 5.004 5.973	0.0 0.0 Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0	5.3 5.3 Discharg Volume (m ³) 271. 364. 467. 576. 641.	5.3 5.3 e Time-Pe (mins 1 4 1 5 5 1 6	237.5 296.2 eak) 26 41 70 .30 .88	ΟK
10080	min Summer min Winter 15 30 60 120 180 240	58.223 58.278 Storm Event min Sur min Sur min Sur min Sur min Sur min Sur	0.223 0.278 F (m nmer 13 nmer 8 nmer 5 nmer 3 nmer 2 nmer 2 nmer 2	m/hr) 1.851 8.566 6.713 5.004 25.973 0.877	0.0 0.0 Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	5.3 5.3 Discharg Volume (m ³) 271. 364. 467. 576. 641. 687.	5.3 5.3 e Time-Pe (mins 1 4 1 5 5 1 6 2 2	237.5 296.2 296.2 26 41 70 .30 .88 248	ΟK
10080	min Summer min Winter 15 30 60 120 180 240 360	58.223 58.278 Storm Event min Sur min Sur min Sur min Sur min Sur min Sur min Sur	0.223 0.278 F (m nmer 13 nmer 13 nmer 5 nmer 5 nmer 3 nmer 2 nmer 2 nmer 1	m/hr) 1.851 8.566 6.713 5.004 5.973 0.877 5.365	0.0 0.0 Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	5.3 5.3 Discharg Volume (m ³) 271. 364. 467. 576. 641. 687. 759.	5.3 5.3 e Time-Pe (mins 1 4 1 5 5 1 6 2 3 3	237.5 296.2 296.2 26 41 70 .30 .88 248 866	ΟK
10080	min Summer min Winter 15 30 60 120 180 240 360 480	58.223 58.278 Storm Event min Sur min Sur min Sur min Sur min Sur min Sur min Sur min Sur	0.223 0.278 F (m nmer 13 nmer 13 nmer 5 nmer 5 nmer 3 nmer 2 nmer 2 nmer 1 nmer 1	m/hr) 1.851 8.566 6.713 5.004 5.973 0.877 5.365 2.341	0.0 0.0 Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	5.3 5.3 Discharg Volume (m ³) 271. 364. 467. 576. 641. 687. 759. 813.	5.3 5.3 e Time-Pe (mins 1 4 1 5 5 1 6 2 3 2 2	237.5 296.2 296.2 296.2 26 41 70 .30 .88 248 866 886 886	ΟK
10080	min Summer min Winter 15 30 60 120 180 240 360 480 600	58.223 58.278 Storm Event min Sur min Sur min Sur min Sur min Sur min Sur min Sur min Sur min Sur	0.223 0.278 F (m nmer 13 nmer 13 nmer 2 nmer 3 nmer 2 nmer 2 nmer 1 nmer 1 nmer 1	m/hr) 1.851 8.566 6.713 5.004 5.973 0.877 5.365 2.341 0.402	0.0 0.0 Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	5.3 5.3 Discharg Volume (m ³) 271. 364. 467. 576. 641. 687. 759. 813. 856.	5.3 5.3 e Time-Pe (mins 1 4 4 5 5 5 3 2 2 6 6 6	237.5 296.2 296.2 296.2 26 41 70 .30 .88 248 866 886 866 886 504	ΟK
10080	min Summer min Winter 15 30 60 120 180 240 360 480 600 720	58.223 58.278 Storm Event min Sur min Sur	0.223 0.278 F (m nmer 13 nmer 13 nmer 2 nmer 3 nmer 2 nmer 2 nmer 1 nmer 1 nmer 1 nmer 1 nmer 1 nmer 1	m/hr) 1.851 8.566 6.713 5.004 5.973 0.877 5.365 2.341 0.402 9.042	0.0 0.0 Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	5.3 5.3 Discharg Volume (m ³) 271. 364. 467. 576. 641. 687. 759. 813. 856. 881.	5.3 5.3 e Time-Pe (mins 1 4 4 5 5 3 2 2 4 6 6 6 7	237.5 296.2 296.2 296.2 26 41 70 .30 .88 248 866 886 886 886 886 886 886 886 886 8	ΟK
10080	min Summer min Winter 15 30 60 120 180 240 360 480 600 720 960	58.223 58.278 Storm Event min Sur min Sur	0.223 0.278 F (m nmer 13 nmer 13 nmer 2 nmer 3 nmer 2 nmer 2 nmer 1 nmer 1 nmer 1 nmer 1 nmer 1 nmer 1	m/hr) 1.851 8.566 6.713 5.004 5.973 0.877 5.365 2.341 0.402 9.042 7.241	0.0 0.0 Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	5.3 5.3 Discharg Volume (m ³) 271. 364. 467. 576. 641. 687. 759. 813. 856. 881. 880.	5.3 5.3 e Time-Pe (mins 1 4 1 5 5 1 6 2 2 4 6 6 6 7 5 2 2 6 6 6 5 7 5 7 5 7 5 7 5 7 5 7 5 7 7 5 7	237.5 296.2 296.2 296.2 26 41 70 .30 .88 248 366 186 504 724 962	ΟK
10080	min Summer min Winter 15 30 60 120 180 240 360 480 600 720 960 1440	58.223 58.278 Storm Event min Sur min Sur	0.223 0.278 F (m nmer 13 nmer 13 nmer 2 nmer 3 nmer 2 nmer 2 nmer 1 nmer 1 nmer 1 nmer 1 nmer 1 nmer 1 nmer 1	m/hr) 1.851 8.566 6.713 5.004 5.973 0.877 5.365 2.341 0.402 9.042 7.241 5.284	0.0 0.0 Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	5.3 5.3 Discharg Volume (m ³) 271. 364. 467. 576. 641. 687. 759. 813. 856. 881. 880. 870.	5.3 5.3 e Time-Pe (mins 1 4 1 5 5 2 2 4 6 6 7 5 2 2 6 6 9 1 2 7 6 9 1 2	237.5 296.2	ΟK
10080	min Summer min Winter 15 30 60 120 180 240 360 480 600 720 960 1440 2160	58.223 58.278 Storm Event min Sur min Sur	0.223 0.278 F (m nmer 13 nmer 13 nmer 2 nmer 3 nmer 2 nmer 1 nmer 1 nmer 1 nmer 1 nmer 1 nmer 1 nmer mmer nmer mmer	m/hr) 1.851 8.566 6.713 5.004 5.973 0.877 5.365 2.341 0.402 9.042 7.241 5.284 3.848	0.0 0.0 Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	5.3 5.3 Discharg Volume (m ³) 271. 364. 467. 576. 641. 687. 759. 813. 856. 881. 880. 870. 1141.	5.3 5.3 e Time-Pe (mins 1 4 1 5 5 2 2 4 6 6 6 9 2 2 6 6 9 1 2 4 1 5 1 7 5 2 4 1 5 1 2 4 1 5 1 1 2 4 1 5 1 2 4 1 5 1 2 1 2 4 1 5 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	237.5 296.2 206.2 200.2 200.2 200.2 200.2 200.2 200.2 200.2 200.2 200.2 200.20	ΟK
10080	min Summer min Winter 15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880	58.223 58.278 Storm Event min Sur min Sur	0.223 0.278 F (m nmer 13 nmer 13 nmer 2 nmer 3 nmer 2 nmer 1 nmer 1 nmer 1 nmer 1 nmer 1 nmer 1 nmer mmer nmer mmer nmer 1	m/hr) 1.851 8.566 6.713 5.004 5.973 0.877 5.365 2.341 0.402 9.042 7.241 5.284 3.848 3.068	0.0 0.0 Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	5.3 5.3 Discharg Volume (m ³) 271. 364. 467. 576. 641. 687. 759. 813. 856. 881. 880. 870. 1141. 1213.	5.3 5.3 e Time-Pe (mins 1 4 1 5 5 2 3 2 2 4 6 6 7 5 2 2 4 1 5 3 2 2 4 6 6 9 2 2 4 7 5 2 2 4 7 5 2 2 4 7 5 2 2 4 7 5 2 2 4 7 7 7 2 2 7 7 7 7 7 7 7 7 7 7 7 7	237.5 296.2 206.2 200.2 200.2 200.2 200.2 200.2 200.2 200.2 200.2 200.2 200.20	ΟK
10080	min Summer min Winter 15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320	58.223 58.278 Storm Event min Sur min Sur	0.223 0.278 mer 13 mer 13 mer 13 mer 2 mer 2 mer 2 mer 1 mer 1 mer 1 mer 1 mer 1 mer 1 mer 1 mer mer mer mer mer mer mer	m/hr) 1.851 8.566 6.713 5.004 5.973 0.877 5.365 2.341 0.402 9.042 7.241 5.284 3.848 3.068 2.226	0.0 0.0 Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	5.3 5.3 Discharg Volume (m ³) 271. 364. 467. 576. 641. 687. 759. 813. 856. 881. 880. 870. 1141. 1213. 1320.	5.3 5.3 e Time-Pe (mins 1 4 4 5 5 2 2 4 6 6 7 5 2 2 4 5 7 5 2 2 4 5 7 5 2 2 4 6 6 7 5 2 8 2 7 5 2 8 2 7 5 2 7 5 2 7 5 7 7 7 7 7 7 7 7 7 7 7	237.5 296.2 296.2 296.2 296.2 296.2 41 70 30 88 248 866 886 248 866 886 248 866 24 962 234 884 972 772	ΟK
10080	min Summer min Winter 15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760	58.223 58.278 Storm Event min Sur min Sur	0.223 0.278 F (m nmer 13 nmer 13 nmer 3 nmer 5 nmer 3 nmer 2 nmer 1 nmer	m/hr) 1.851 8.566 6.713 5.004 5.973 0.877 5.365 2.341 0.402 9.042 7.241 5.284 3.848 3.068 2.226 1.771	0.0 0.0 Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	5.3 5.3 Discharg Volume (m ³) 271. 364. 467. 576. 641. 687. 759. 813. 856. 881. 880. 870. 1141. 1213. 1320. 1400.	5.3 5.3 e Time-Pe (mins 1 4 1 5 5 2 4 6 6 9 2 2 6 6 9 1 2 6 6 9 1 2 7 6 9 1 2 8 2 7 5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	237.5 296.2 296.2 296.2 296.2 296.2 296.2 296.2 296.2 296.2 200.2 200.2 200.2 200.2 200.2 200.2 200.2 200.2 200.2 200.20	ΟK
10080	min Summer min Winter 15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760 7200	58.223 58.278 Storm Event min Sur min Sur	0.223 0.278 mer 13 mer 13 mer 13 mer 2 mer 3 mer 2 mer 1 mer 1 me	m/hr) 1.851 8.566 6.713 5.004 5.973 0.877 5.365 2.341 0.402 9.042 7.241 5.284 3.848 3.068 2.226 1.771 1.483	0.0 0.0 Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	5.3 5.3 Discharg Volume (m ³) 271. 364. 467. 576. 641. 687. 759. 813. 856. 881. 880. 870. 1141. 1213. 1320. 1400. 1467.	5.3 5.3 e Time-Pe (mins 1 4 1 5 5 1 6 9 2 2 4 6 6 6 9 1 2 6 6 9 1 2 8 2 7 5 1 2 8 2 2 4 1 5 1 2 6 9 1 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	237.5 296.2 296.2 296.2 296.2 296.2 296.2 296.2 296.2 296.2 296.2 207.2 20.2 20	ΟK
10080	min Summer min Winter 15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760 7200 8640	58.223 58.278 Storm Event min Sur min Sur	0.223 0.278 mer 13 mer 13 mer 13 mer 5 mer 3 mer 2 mer 1 mer 1 me	m/hr) 1.851 8.566 6.713 5.004 5.973 0.877 5.365 2.341 0.402 9.042 7.241 5.284 3.848 3.068 2.226 1.771	0.0 0.0 Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	5.3 5.3 Discharg Volume (m ³) 271. 364. 467. 576. 641. 687. 759. 813. 856. 881. 880. 870. 1141. 1213. 1320. 1400. 1467. 1524.	5.3 5.3 e Time-Pe (mins 1 4 1 5 5 1 6 9 2 2 4 6 6 6 9 1 2 6 6 9 1 2 6 7 5 7 8 2 7 6 9 1 2 8 2 3 2 5 5 1 5 1 5 1 5 1 5 1 7 5 1 7 1 7 5 1 7 1 7	237.5 296.2 296.2 296.2 296.2 296.2 296.2 296.2 296.2 296.2 200.2 200.2 200.2 200.2 200.2 200.2 200.2 200.2 200.2 200.20	ΟK

©1982-2018 Innovyze

drock Consultant:								Page 2 Micro	_
ate 04/12/2019 09	:41		Desi	gned b	y jasonn	nagee			
le Attenuation Re	ev B.srcz	c	Chec	ked by				Draina	J
novyze			Sour	ce Con	trol 201	8.1.1			
1									_
Summary	v of Resu	lts f	or 10	00 year	Return	Period	(+40%)	-	
Storm	Max	Max	м	ax	Max	Max	Max	Status	
Event	Level	Depth	Infilt	ration	Control D	2 Outflow	Volume		
	(m)	(m)	(1	/s)	(l/s)	(l/s)	(m³)		
	50 250	0 250		0 0	F 2		206.2	0.11	
30 min Wint				0.0	5.3	5.3	396.3	ОК	
60 min Wint 120 min Wint				0.0	5.3 5.3	5.3 5.3	502.3 607.8	ОК	
120 min Wint 180 min Wint				0.0	5.3	5.3	663.8	ОК	
240 min Wint				0.0	5.3	5.3	698.6	O K	
360 min Wint				0.0	5.3	5.3	745.7	O K	
480 min Wint				0.0	5.3	5.3	773.3	ОК	
600 min Wint				0.0	5.3	5.3		ОК	
720 min Wint				0.0	5.3	5.3	797.7	ОК	
960 min Wint				0.0	5.3	5.3	800.2	ОК	
1440 min Wint	er 58.726	0.726		0.0	5.3	5.3	773.5	ОК	
2160 min Wint	er 58.657	0.657		0.0	5.3	5.3	699.7	O K	
2880 min Wint	er 58.605	0.605		0.0	5.3	5.3	644.3	O K	
4320 min Wint	er 58.499	0.499		0.0	5.3	5.3	531.0	O K	
5760 min Wint	er 58.397	0.397		0.0	5.3	5.3		O K	
7200 min Wint				0.0	5.3	5.3		O K	
8640 min Wint				0.0	5.3	5.3		O K	
10080 min Wint	er 58.165	0.165		0.0	5.3	5.3	175.6	ОК	
	Storm Event		Rain m/hr)	Flooded Volume (m ³)	Discharg Volume (m³)				
	30 min Wir			0.0			41		
1	60 min Wir 20 min Wir		6.713	0.0			70		
	20 min Wir 80 min Wir		5.004 5.973	0.0			128 186		
	40 min Win		0.877	0.0			244		
	60 min Wir		5.365	0.0			362		
	80 min Wir		2.341	0.0			478		
	00 min Wir		0.402	0.0			594		
	20 min Wir		9.042	0.0			710		
9	60 min Wir		7.241	0.0			938		
14	40 min Wir	iter	5.284	0.0	830.	3 13	384		
	60 min Wir		3.848	0.0	1278.	1 1'	756		
	80 min Wir		3.068	0.0			172		
	20 min Wir		2.226	0.0			032		
	60 min Wir		1.771	0.0			364		
	00 min Wir 40 min Wir		1.483	0.0			524		
	40 min Wir 80 min Wir		1.284	0.0			368 256		
100	ou ulin Wir	ller	1.137	0.0	1762.	S 60	056		
		©198	32-20	18 Inno	ovyze				

Hydrock Consultants Ltd		Page 3					
· ·		Micco					
Date 04/12/2019 09:41	Designed by jasonmagee	Micro Drainage					
File Attenuation Rev B.srcx	Checked by						
Innovyze	Source Control 2018.1.1						
Ra	infall Details						
Rainfall Model Return Period (years) Region Engla M5-60 (mm) Ratio R Summer Storms	100Cv (Summer) 0.7and and WalesCv (Winter) 0.820.000Shortest Storm (mins)0.350Longest Storm (mins) 100	40 15					
Tin	ne Area Diagram						
Tota	al Area (ha) 1.099						
Time (mins) Area Ti From: To: (ha) Fr	me (mins) Area Time (mins) Area om: To: (ha) From: To: (ha)						
0 4 0.366	4 8 0.366 8 12 0.366						
©198	2-2018 Innovyze						


lydrock Consultants Ltd				Pa	age 4
					licco
pate 04/12/2019 09:41	Designed	hy ise	0000000		licro
			Olillagee		Irainago
ile Attenuation Rev B.srcx	Checked	-			J
nnovyze	Source C	Control	2018.1.1		
	Model Det	ails			
Storage is On	nline Cover	Level (m	ı) 59.500		
Cellula	ar Storage	e Struct	ure		
Inve Infiltration Coefficient Infiltration Coefficient	Base (m/hr	.) 0.0000		tor 2.0 ity 0.95	
Depth (m) Area (m²) Inf. Ar	rea (m²) Dej	pth (m) A	rea (m²) Inf	. Area (m²)
0.000 1121.0	0.0	1.001	0.0	0.	C
1.000 1121.0	0.0				
Hydro-Brake@	® Optimum	Outflow	Control		
Uni	t Reference	MD-SHE-0	102-5700-170	0-5700	
	gn Head (m)			1.700	
Design	Flow (l/s)			5.7	
	Flush-Flo™		Calc	culated	
	-		se upstream s	-	
	Application		2	Surface	
-	p Available			Yes	
	ameter (mm)			102	
Inver Minimum Outlet Pipe Dia	t Level (m)			57.800 150	
Suggested Manhole Dia				1200	
	oints		Flow (l/s)		
Control Po	oints	Head (m)	FIOW (1/S)		
Design Point (C	Calculated)	1.700	5.7		
	Flush-Flo™	0.446	5.3		
× =1	Kick-Flo®	0.909			
Mean Flow over	Head Range	-	4.8		
The hydrological calculations have Hydro-Brake® Optimum as specified. Hydro-Brake Optimum® be utilised the invalidated	Should ano	ther type	e of control	device oth	er than a
Depth (m) Flow (1/s) Depth (m) Flo	ow (l/s) Deg	pth (m) F	low (l/s) De	epth (m) Fl	ow (l/s)
0.100 3.4 1.200	4.8	3.000	7.4	7.000	11.1
0.200 4.8 1.400	5.2	3.500	8.0	7.500	11.5
0.300 5.2 1.600	5.5	4.000	8.5	8.000	11.8
0.400 5.3 1.800	5.9	4.500	9.0	8.500	12.2
	6.1	5.000	9.5	9.000	12.5
0.500 5.3 2.000	6.4	5.500	9.9 10.3	9.500	12.9
0.500 5.3 2.000 0.600 5.3 2.200		6 000			
0.500 5.3 2.000	6.7 7.0	6.000 6.500	10.7		
0.5005.32.0000.6005.32.2000.8004.82.400	6.7				



Appendix K

Supporting Surrey County Council Information

Detailed Flood Risk Report Guild Later Living, Woodcote Green 07 November 2019

Detailed Flood Risk Report

Purpose of Report

This document has been prepared for the purpose of providing flood risk information for a specific site; either to aid in the development of a planning application or for flood risk management. The information provided is that which is which is available to Surrey County Council at the time and may include specific guidance e for Planners and Developers about Sustainable Drainage. Surrey County Council gives no guarantee that any flood risk information provided is100% accurate, or exhaustive; it is solely the information we currently hold.

The applicant is advised that there will need to be additional discussions with the County Council as Highway Authority in respect of any drainage proposals for proposed highway works under Section 278 or proposed adoption of new roads under Section 38 of the 1980 Highway Act. Consenting for the discharge of surface water to Ordinary Watercourses should also be directed to the County Council under the Land Drainage Act (1991).

Document History

This report relates to the following enquiry/pre-application request/planning application as:

SCC Application	Other ref if applicable	Version	Originator	Date	Reviewer	Date
0	VLLFA/PAA /19/121	0.1	LJ	29/10/2019	AD	29/10/2019

Glossary

The table below defines some of the frequently used terminology for your general information.

Acronym/Term	Definition
Annual Probability	Flood events are defined according to their likelihood of occurrence. The term 'annual probability of flooding' is used, meaning the chance of a particular flood occurring in any one year. This can be expressed as a percentage. For example, a flood with an annual probability of 1 in 100 can also be referred to as a flood with a 1% annual probability. This means that every year there is a 1% chance that this magnitude flood could occur.
Flood Zone 1	Area with a low probability of flooding from rivers (< 1 in 1,000 annual chance of flooding).
Flood Zone 2	Area with a medium probability of flooding from rivers (1 in 100 – 1 in 1,000 annual chance of flooding).
Flood Zone 3	Area with a high probability of flooding from rivers (> 1 in 100 annual chance of flooding).
Fluvial flooding	Exceedance of the flow capacity of river channels (whether this is a Main River or an Ordinary Watercourse), leading to overtopping of the river banks and inundation of the surrounding land. Climate change is expected to increase the risk of fluvial flooding in the future.
Infiltration SuDS	These are sustainable drainage systems which facilitate the infiltration of surface water into the ground. Once in the ground, the water percolates through the subsurface to the groundwater.
Groundwater flooding	Emergence of groundwater at the surface (and subsequent overland flows) or into subsurface voids as a result of abnormally high groundwater flows, the introduction of an obstruction to groundwater flow and / or the rebound of previously depressed groundwater levels.
Main River	Main rivers are usually larger streams and rivers, but some of them are smaller watercourses of local significance. Main Rivers indicate those watercourses for which the Environment Agency is the relevant risk management authority.

Ordinary Watercourse	Ordinary Watercourses are displayed in the mapping as the detailed river network. An ordinary watercourse is any watercourse (excluding public sewers) that is not a Main River, and the Lead Local Flood Authority or Internal Drainage Board are the relevant risk management authority.
Other sources of flood risk	Flooding from canals, reservoirs (breach or overtopping) and failure of flood defences.
Sewer flooding	Flooding from sewers is caused by exceedance of sewer capacity and / or a blockage in the sewer network. In areas with a combined sewer network system there is a risk that land and infrastructure could be flooded with contaminated water. In cases where a separate sewer network is in place, sites are not sensitive to flooding from the foul sewer system.
SFRA	Strategic Flood Risk Assessment
SWMP	Surface Water Management Plan
SuDS	Sustainable Drainage Systems
Surface water flooding	Intense rainfall exceeds the available infiltration capacity and / or the drainage capacity leading to overland flows and surface water flooding. Climate change is expected to increase the risk of surface water flooding in the future. This source is also referred to as pluvial flooding.
Tidal flooding	Propagation of high tides and storm surges up tidal river channels, leading to overtopping of the river banks and inundation of the surrounding land.
RoFSW	Risk of Flooding from Surface Water. The data shows areas at risk of flooding from surface water, for three flooding return periods (1 in 30, 1 in 100 and 1 in 1000), and the depth, velocity, hazard and flow direction associated with that flooding. It also includes; data on the models used to develop the maps and information that describes the suitable uses of the data.

Data Sources

The following sources of data have been used in preparing this report and its associated mapping:

- Geology- Bedrock and Superficial Deposits (British Geological Survey- 50,000 scale digital)
- Soilscapes (Cranfield University- http://www.landis.org.uk/soilscapes/)
- SuDS Suitability (British Geological Survey)
- Surface Water Flood Risk
 - Risk of Flooding from Surface Water (RoFSW) (Environment Agency)
- Groundwater
 - Susceptibility to Groundwater Flooding (British Geological Survey)
- Historic Flood Evidence
 - Historic Flood Map (Environment Agency)
 - Wetspots (Surrey County Council)
 - Property Flooding Database (Surrey County Council)
 - Historic Flooding Incidents Database (Surrey County Council)

Site Flood Risk Information

Groundwater

Risk & Evidence

The area of interest is located within an area which is classed as having a potential for groundwater flooding to occur at the surface. This is based on a conceptual understanding of the regional geology and hydrogeology and is therefore only an indication of where geological conditions could enable groundwater flooding to occur. It does not indicate hazard or risk and it does not provide any information on the depth to which groundwater flooding may occur or the likelihood of the occurrence of an event of a particular magnitude. This information should not be used on its own to make planning decisions at any scale, particularly site scale, or to indicate the risk of groundwater flooding.

Implications/Considerations for Planning

The site has a very high susceptibility to groundwater flooding. It is recommended that the following actions are considered as part of the planning application;

• Is there on site monitoring of groundwater levels?

• Is the development planning to discharge to the ground? If so, this may not be appropriate and appropriate site based investigations should be undertaken.

Surface Water

Risk & Evidence

The area of interest is shown to be at risk of surface water flooding in the following return period events; 1 in 30, 1 in 100 and 1 in 1000. The surface water flood extents are not appropriate to be used in assessing flood risk at an individual property level. In addition, the methods used to derive the flood extents are based on modelled design rainfall (i.e. not observed patterns of rainfall) and consequently this information cannot definitively show that an area of land or property is, or is not, at risk of flooding.

The RoFSW have been created from the Environment Agency's nationally produced surface water flood mapping, and appropriate locally produced mapping from Lead Local Flood Authorities such as Surrey County Council. This means that in different areas, the flood extents have varying levels of suitability scales for viewing or assessing. This area's information is only suitable for assessing flood risk at a 'town to street' scale. This scale is suitable for identifying which parts of towns or streets are at risk, or which towns or streets have the most risk. It is likely to be reliable for a local area, but not individual properties.

Implications/Considerations for Planning

In areas at risk of surface water flooding, the following sections outline considerations for the appropriate management of surface water, based on the information provided to Surrey County Council.

Historical Flooding

Risk & Evidence

The Historic Flood Map shows that there is no record of this area being previously flooded by rivers, groundwater or a combination of these sources. However this does not necessarily mean that flooding has not occurred, just that it has not been reported and/or recorded within the Historical Flood Map dataset.

Wetspots indicate the approximate location of known previous flooding on the highway. There is a wetspot near to the area of interest and this highlights that there has been historic flooding in the vicinity. If you would like to find out more about these local wetspots, please visit the Surrey County Council Wetspots Interactive Map: http://new.surreycc.gov.uk/maps/surrey-interactivemap. You can find the wetspots under the 'Roads and Transport' drop down to the right hand side of the map.

According to Surrey County Council's Property Flooding Database, there have been previous instances of property flooding nearby, either internally or externally. The instances of property flooding occurred in Winter 2013/14. Property flooding is sensitive information and this is why more specific details on the location of flooding cannot be provided. Whilst this dataset is the most comprehensive record of property flooding in Surrey, there may be instances of property flooding which were not reported and therefore are not recorded in this dataset.

Surrey County Council's Historic Flooding Incident Database highlights all reported, non point location specific, flooding incidents e.g. example road was flooded. The data indicates that there is a nearby location which has previously reported flooding.

Implications/Considerations for Planning

In areas which have been previously affected by flooding, the following should be considered:

- Is there a safe access/egress route demonstrated?
- Is there an evacuation plan in place?
- Have resilience/resistance measures been considered in the design?

SuDS Suitability

The selection of SuDS should be considered in the early stages of design. The selection criteria, as set out by The SuDS manual (CIRIA C697, 2007), provides a good framework for doing this.

Potential for Infiltration SuDS

Surrey County Council is licensed to use the Infiltration SuDS Data produced by the British Geological Survey. This data was produced after the Pitt Review (2007) and aims to encourage the appropriate use of SuDS. By utilising SuDS, the reliance on traditional piped systems is reduced, and the sustainable management of water is encouraged.

The Infiltration SuDS data is used to make a preliminary assessment of the suitability of the subsurface for infiltration SuDS. This data is not a replacement for a soakaway test or site investigation.

The suitability of utilising infiltration SuDS techniques has been summarised for the application site below.

Constraints to Infiltration

There are very significant constraints indicated at the site for the use of infiltration SuDS and a significant potential for one or more geohazards associated with facilitating infiltration. A full appraisal of ground conditions is necessary and the site investigation should consider whether the potential for or the consequences of infiltration are significant.

Drainage Potential

There is a very significant potential for one or more geohazards associated with infiltration. Only install infiltration SuDS if the potential for or the consequences of infiltration are considered not to be significant.

Stability of Ground

Ground instability problems are probably present. Increased infiltration may result in ground instability. Before installing infiltration SuDS consider the potential for or the consequences of infiltration on ground stability.

Groundwater Vulnerability

The groundwater may be vulnerable to contamination. Where surface water is being infiltrated into the ground, this water should be free of contaminants. Before installing infiltration SuDS, consider the risks associated with the transport of contaminants to the groundwater. Check previous land use and potential for the presence of contaminated ground.

Superficial Deposit Permeability

Superficial deposits are likely to be free-draining. It is recommended that the infiltration rate is quantified via an infiltration/soakaway test.

Bedrock Permeability

The bedrock permeability is spatially variable, but likely to permit moderate infiltration. It is recommended that the infiltration rate is quantified via an infiltration/soakaway test.

Proposed Approach

Drainage and Discharge Methods

Some areas of the site may be suitable for infiltration based SuDS techniques however ground conditions and groundwater levels should be fully investigated through intrusive ground investigations and should be provided to support any Planning Application made in respect of the site.

A hierarchical approach should be taken to the discharge of surface water from the site.

- Option 1 to ground;
- Option 2 attenuation and discharge to adjacent watercourse;
- Option 3 attenuation and discharge to surface water sewer.

Any surface water discharged from the site should be restricted to the existing greenfield run-off rate applied to the impermeable area of the site only. Qbar is considered acceptable (applied to the proposed impermeable area only) or a staged discharge approach with greenfield run-off rates applied to the 1 in 1 year, 1 in 30 year and 1 in 100 year events accordingly.

On site attenuation should be provided for the 1 in 100 year + climate change rainfall event. 40% should be applied for climate change for residential development. A lower % for climate change may be considered acceptable for commercial property dependent upon the life span of the development, however sensitivity testing will be required up to the + 40% event. Where appropriate, a 10% allowance for urban creep should be included in the drainage designs.

If proposed site works affect an Ordinary Watercourse, Surrey County Council as the Lead Local Flood Authority should be contacted to obtain prior written Consent. More details are available on our website.

Areas of the site have been identified as having a risk of surface water flooding and as such this risk should be fully assessed as part of any Planning Application. More vulnerable development should be placed in areas at lower risk and existing surface water flow routes should be maintained to ensure flood risk is not increased.

SuDS Components

Many schemes deliver the management of water quantity but do not fulfil the four pillars of SuDS design as defined by the SuDS Manual. The manual seeks to encourage schemes that manage the quantity and quality of surface water runoff, provide an amenity that integrates surface water as an attractive part of public space and also enhance biodiversity. Schemes based around the management of quantity alone are purely drainage schemes not SuDS.

The following proposals for SuDS have been put forward as part of the drainage design: Intrusive ground investigations should be completed to determine ground conditions and assess groundwater levels. All SuDS principles could be affected if groundwater levels are high, and therefore this information should be gathered to inform the drainage strategy.

If soakaways are unsuitable, above ground attenuation of surface water should be considered in the first instance before below ground storage is proposed. If above ground attenuation of surface water is not considered feasible full justification should be provided.

The Applicant should consider the management and maintenance of the proposed SuDS elements and this information should be presented as part of any Planning Application.

Site Development Details: Cross-check

The table below cross-checks the information provided with the planning application, with information easily available to Surrey County Council and provides recommendations on the suitability of the proposed drainage.

Site Details	Description
Bedrock	Clay, Silt and Sand on the majority of the site, on the east side of the site the bedrock is Clay and Silt
Superficial Deposits	Sand and Gravel
Soils	"Soilscapes conveys a summary of the broad regional differences in the soil landscapes of England and Wales. Soilscapes is not intended as a means for supporting detailed assessments, such as land planning applications or site investigations; nor should it be used to support commercial activities. For such applications, a parallel service Soils Site Reporter provides comprehensive reporting for specific locations. Ground investigations should also be evidenced when considering infiltration SuDS. "
	unclassified
Depth to Water Table (m)	Groundwater is likely to be less than 3 m below the ground surface for at least part of the year. It is recommended that the seasonal variation in groundwater levels are determined. The scale of site specific assessments and evidence of groundwater levels should be appropriate to the size and nature of the proposed development site. This site may not be suitable for infiltration SuDS if the groundwater level reaches <1m below the ground surface.
Discharge method- Sewer (if applicable)	The nearest sewer is more than 50m from the proposed development. This indicates that discharging to the sewer may be feasible. Infiltration SuDs are mandatory unless where evidenced that they are not appropriate (e.g. contaminated land, high ground water levels or land subsidence). If SuDS are not appropriate, then evidence that connecting to the sewer network is appropriate and has been permitted by the water utility company should be provided along with any third part land permissions.
Discharge method- Watercourse (if applicable)	The nearest watercourse is less than 50m from the proposed development. This indicates that discharging to the watercourse may be appropriate. Consideration should be given to the downstream flood risk and water quality of the watercourse. When discharging to watercourses, there should be a minimum of an 8m buffer from any building for access and maintenance.

Recommendations and Summary

Any surface water discharged from the site should be limited to the existing greenfield run-off rate applied to the proposed impermeable area of the site only.

Evidence must be provided to establish the greenfield runoff rate for the site. For previously developed sites, evidence must be provided where the greenfield runoff rate cannot be reasonably practicably achieved.

On site attenuation should be provided for the 1 in 100 year + climate change rainfall event, with a sensitivity check up to the 1 in 100 year (+40% climate change) event if not used already.

SCC Surface water drainage pro-forma should be completed to accompany any future Planning Applications with supporting evidence provided.

If proposed site works affect an Ordinary Watercourse, Surrey County Council as the Lead Local Flood Authority should be contacted to obtain prior written Consent. More details are available on our website.

If proposed works result in infiltration of surface water to ground within a Source Protection Zone the Environment Agency will require proof of surface water treatment to achieve water quality standards.

Good Practice Guidance

For all areas within Flood Zone 1 and where the application site is less than 1ha the following guidance should be followed (in addition to that set out above) when considering surface water management and SuDS.

Flood Risk

Please refer to the Environment Agency's Standing Guidance for Flood Risk.

SuDS Suitability and Methods

Please refer to the <u>SuDS advice note</u> and the <u>Evidence Required note</u> on Surrey County Council's website to assist in directing developers and designers to the most appropriate guidance and technical standards.

A non-exhaustive list of references is provided at the end of this document to further assist Planners in informing the planning decision.

References

BRE365. Soakaway Design

Cambridge City Council. 2009. SuDS Design and Adoption Guide. https://www.cambridge.gov.uk/sites/www.cambridge.gov.uk/files/docs/SUDS-Design-and-Adoption-Guide.pdf

CIRIA. 2015. The SuDS Manual (C753).

CIRIA. 2006. Designing for exceedance in urban drainage-good practice (C635).

CIRIA.1996. Infiltration Drainage: Manual of Good Practice (C156)

Defra. 2015. Sustainable Drainage Systems: Non-statutory technical standards for sustainable drainage systems.

https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/415773/sustainable-drainage-technical-standards.pdf