

Guild Living Epsom. Epsom. Guild Living.

SUSTAINABILITY

ENERGY AND SUSTAINABILITY DOCUMENT

REVISION 1 - 20 DECEMBER 2019

Audit sheet.

Rev.	Date	Description	Prepared	Verified
0	12/12/2019	Draft Issue for Comment	JE	LH/BH
1	20/12/2019	Issue for Planning Submission	LH	BH

This document has been prepared for Guild Living only and solely for the purposes expressly defined herein. We owe no duty of care to any third parties in respect of its content. Therefore, unless expressly agreed by us in signed writing, we hereby exclude all liability to third parties, including liability for negligence, save only for liabilities that cannot be so excluded by operation of applicable law. The consequences of climate change and the effects of future changes in climatic conditions cannot be accurately predicted. This report has been based solely on the specific design assumptions and criteria stated herein.

Document reference: 191220 GLE Energy and Sustainability Document Rev 1

Contents.

Audit sheet.	2
Executive Summary.	4
Carbon Dioxide Emissions.	4
Sustainability.	4
1. Introduction.	5
2. Policy Requirements & Building Regulations.	5
2.1 The Building Regulations	5
2.2 National Planning Guidance	5
2.3 Local Planning Guidance	6
3. Energy Efficiency Measures and Heating Infrastructure.	6
3.1 Passive Measures	6
3.2 Active Measures	6
3.3 Overheating and Cooling	6
3.4 District Heating Network (DHN)	7
3.5 Proposed Heating Infrastructure	7
4. Utilise Low and Zero Carbon (LZC) Technologies.	7
4.1 Appraisal of Renewable Technologies	7
5. Results.	9
5.1 SAP 2012	9
5.2 SAP 10	9
5.3 Site Wide Energy from Low and Zero Carbon (LZC) Energy Sc	ources 9
6. Sustainability.	10
6.1 Management	10
6.2 Health and Wellbeing	10
6.3 Energy	10
6.4 Transport	10
6.5 Water	10
6.6 Materials	10
6.7 Waste	10
6.8 Land Use and Ecology	10
6.9 Pollution	10

_	<u> </u>	
1.	Conc	lusion

Appendix A: Sample SAP DER Worksheets.

Appendix B: BRUKL Document.

Appendix C: Calculation of Energy from LZC Sources.

Appendix D: BREEAM UK New Construction 2018 Pre-Assessment Document.

	11
	12
	13
	14
ent	
	15

SUSTAINABILITY ENERGY AND SUSTAINABILITY DOCUMENT - REV. 1

Executive Summary.

This report describes the Energy Strategy and Sustainability Statement for the proposed Guild Living Epsom development, in Epsom.

Figure 1 Proposed Site Image (Credit: Marchese Partners)

The development comprises of residential units, an assisted living facility, as well as retail areas and leisure facilities. There are also proposals to provide separate vehicular access and egress points on Woodcote Green Road, as well as a number of parking spaces provided at surface level throughout the site. The project has been developed with energy efficiency, environmental performance and the local context as key design parameters.

Carbon Dioxide Emissions.

The Epsom and Ewell Borough Council (EEBC) Core Strategy 2007 recognises that all development which takes place in Epsom and Ewell must contribute to addressing climate change. As such, all domestic development should contribute to a sustainable future in Epsom and, all new developments are encouraged to make use of renewable energy.

In addition to the progressively demanding standards for CO₂ emissions set through Building Regulations Part L 2013, the Core Strategy 2007 encourages the use of LZC energy technologies to reduce the total carbon emissions from the development by 10% as part of the aim to reduce pollution and climate change.

In order to demonstrate compliance with Part L 2013, energy modelling has been carried out on the proposed development. Part L 2013 compliant baseline calculations were carried out to establish the regulated carbon dioxide emissions for the development. In order to achieve Guild Living Brand standards, the development will target a 35% reduction over Part L 2013 (using SAP 10 Carbon Factors); and the development will achieve BREEAM 'Very Good', with aspirations of BREEAM 'Excellent'.

These calculations include a number of the following passive and active energy efficiency measures.

The passive measures include the specification of high performance building fabric including u-values and an air permeability that are significantly beyond the minimum requirements of the Building Regulations.

The active measures include:

- Insulated pipework to reduce circulation losses;
- High energy efficient heat recovery ventilation; and
- Low energy lighting. •

Research into a possible connection to an existing District Heating Network (DHN) has been looked into via the District Heating Installation Map provided by The Association for Decentralised Energy and found that there are no nearby connections. However, some of the leisure and retail facilities are looking at the potential of connecting to the district heating network for the general hospital, this is being investigated further.

A number of renewable technologies were investigated with the view to be incorporated in the development. Following this investigation, it was decided that a photovoltaic array is the preferred strategy to meet compliance with The Core Strategy 2007 and is proposed for this development.

The assessment showed that a reduction in carbon emissions of 48% over a Part L 2013 compliant development using SAP 10 carbon factors can be achieved. In addition, 14% of the development's energy will come from LZC energy sources.

Sustainability.

Sustainability has been a key design consideration for this development from the onset of the project and consideration of the impact of design proposals and measures on the sustainable credentials of the development has been made throughout the design development to date and will continue throughout the design and construction process.

Below is a selection of some of the measures that will be incorporated into the scheme:

- Project delivery stakeholders will meet to identify and define roles and responsibilities of each of the key phases of project delivery;
- The contractor will be selected with consideration of their ability to comply with the Considerate Constructors Scheme;
- An energy assessment has been carried out in line with the requirements of The Core Strategy 2007;
- Where external lighting is required, energy efficient luminaires will be specified, and they will be automatically controlled for the prevention of operation during daylight hours;
- Any external lighting will be designed to reduce night time light pollution;
- The site benefits from being within 1 mile of Epsom Town Centre and contains cycle and mobility scooter storage;
- Water consumption will be reduced through the specification of efficient sanitary ware:
- Materials with a low environmental impact will be implemented where feasible;
- Recycled, sustainable and locally sourced materials will be used where possible;
- All timber and timber-based products will be legally harvested and traded; and
- A resource plan will be developed to minimise construction waste related to on-site construction and dedicated off-site manufacture / fabrication.

1. Introduction.

The proposed Guild Living Epsom development is situated in the town of Epsom, Surrey. The development is adjacent to Epsom Hospital, with Epsom town centre to the North East.

The development comprises of residential units, an assisted living facility, as well as retail areas and leisure facilities. There are also proposals to provide separate vehicular access and egress points on Woodcote Green Road, as well as a number of parking spaces provided at surface level throughout the site.

The site is highlighted in Figure 2.

Figure 2 Aerial view of the Proposed Development site. Credit: Google

This Energy and Sustainability Document has been prepared in support of the planning application for the proposed development of Guild Living Epsom, hereafter referred to as the Proposed Development.

The purpose of this document is to set out the energy strategy and overall sustainability proposals for the Proposed Development. This document provides a summary of the key policies that are applicable to the Proposed Development and an energy strategy commensurate with the current building regulations as well as regional and local planning policies.

2. Policy Requirements & Building Regulations.

The policies and regulations that are required to be satisfied are summarised as follows.

2.1 The Building Regulations

Part L Conservation of Fuel and Power deals with energy efficiency requirements in the Building Regulations. New buildings will be assessed under Approved Document Part L1A (Domestic) and Part L2A (Non-Domestic) of the Building Regulations.

Part L1A 2013 of Building Regulations - New Domestic Elements

On a national level, Part L1A of The Building Regulations sets the energy efficiency requirements in new domestic buildings.

Under Building Regulations Approved Document Part L1A, compliance is achieved by demonstrating that the Dwelling Emission Rate (DER) does not exceed the Target Emission Rate (TER) and that the Dwelling Fabric Efficiency (DFEE) does not exceed the Target Fabric Efficiency (TFEE).

In addition, Part L1A also requires that the fabric elements and the fixed building services all meet minimum energy efficiency standards (Criterion 2), and reasonable provision for limiting solar gain through the building fabric (Criterion 3).

2.2 National Planning Guidance

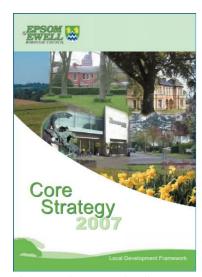
The National Planning Policy Framework, February 2019

The National Planning Policy Framework (NPPF) was updated in February 2019. The NPPF sets out the Government's strategy on the delivery of sustainable development through the planning system. It provides a framework within which locally-prepared plans for housing and other development can be produced.

Planning law requires that applications for planning permission be determined in accordance with the development plan, unless material considerations indicate otherwise. The NPPF must be considered in preparing the development plan, and is a material consideration in planning decisions. Planning policies and decisions must also reflect relevant international obligations and statutory requirements.

The purpose of the planning system is to contribute to the achievement of sustainable development. At a very high level, the objective of sustainable development can be summarised as meeting the needs of the present without compromising the ability of future generations to meet their own needs.

Part L2A 2013 of Building Regulations - New Non-Domestic Elements


On a national level, Part L2A of The Building Regulations sets the energy efficiency requirements in new non-domestic buildings.

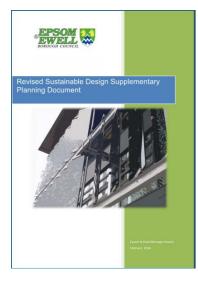
Under Building Regulations Approved Document Part L2A: Conservation of Fuel and Power (2013 edition), compliance is achieved by demonstrating that the Building CO₂ Emission Rate (BER) does not exceed the Target CO₂ Emission Rate (TER).

In addition, Part L2A also requires that the fabric elements and the fixed building services all meet minimum energy efficiency standards (Criterion 2), and reasonable provision for limiting solar gain through the building fabric (Criterion 3).

The applicable Development Plan for the Proposed Development is The Epsom Core Strategy 2007. Please refer to the following sections for further details.

2.3 Local Planning Guidance

Epsom Core Strategy 2007


The Epsom Core Strategy 2007 is the overarching planning policy document. which forms part of a wider set of local planning policy documents known as the "Epsom and Ewell Borough Council (EEBC) Development Plan".

The Epsom Core Strategy has set out a vision and objectives for the development of Epsom up to 2022, and has been designed to target four broad aims:

- Conserving resources;
- Creating a quality environment and special places;
- Addressing community needs now and in future; and
- Encouraging a prosperous economy.

Policy CS 6 states "Proposals for development should result in a sustainable environment and reduce, or have a neutral impact upon, pollution and climate

change. The council will expect proposals to demonstrate how sustainable construction and design can be incorporated to improve the energy efficiency of development - both new build and conversion."

Revised Sustainable Design Guide 2016

The Sustainable Design Guide 2016 is a supplementary planning document which provides detailed information on how planning policy will be implemented, specifically Core Strategy Policy CS6. By following this guidance document, prospective developers can help ensure that their development proposals are genuinely environmentally sustainable.

To demonstrate compliance with Core Strategy Policy CS6, all minor and major development proposals are required to be accompanied by a Sustainability Statement or appropriate BREEAM Assessment.

In order to comply with the Guild Living brand standard, the nursery and retail areas have targeted BREEAM 'Very Good', with aspirations of 'Excellent'. It is important to note that the assisted living facility is not captured in the strategy.

Please refer to Appendix D for a full review of the BREEAM pre-assessment.

3. Energy Efficiency Measures and Heating Infrastructure.

3.1 Passive Measures

In order to reduce the energy demand of the development, the fabric of the development will be improved significantly beyond the minimum requirements of Criterion 2 of Part L1A and Part L2A 2013. Table 1 shows the typical envelope performance characteristics that will be incorporated into the scheme design to limit the buildings energy consumption.

Table 1 Element U-Values

	Element	Domestic	Non Domestic
	Floor U - Value (W/m²K)	0.13	0.15
	Roof U - Value (W/m²K)	0.13	0.15
Ex	ternal Walls U - Value (W/m²K)	0.15	0.18
Walls	s between heated spaces (W/m ² K)	Fully filled cavity with sealed edges	N/A
S	U-value (W/m ² K)	1.4	1.40
Glazing azed doors	Frame type	Metal	Metal
Glazi Glazed	G-value	0.35	0.35
Ċ	Fraction Glazed	0.80	0.90
Air	permeability (m³/hm² (@ 50Pa)	3.00	3.00
	Thermal Bridge Specification	Accredited psi values	Default

3.2 Active Measures

Energy consumption will be further reduced by the incorporation of active energy efficiency measures in the design of the mechanical and electrical engineering systems. The following energy efficiency measures will be incorporated:

- Insulated pipework to reduce circulation losses;
- High energy efficient heat recovery ventilation; and
- Low energy lighting.

3.3 Overheating and Cooling

The Core Strategy 2007 considers planning for and the impacts of climate change. All development should be future proofed and able to recover from extreme weather events such as flooding, drought and heatwaves. Developments should incorporate thermal mass, shading devices and night time cooling strategy into building design in order to prevent overheating.

Below are the steps and proposals to demonstrate mitigation against overheating

- 1. Reduce the amount of heat entering a building through orientation, shading, high albedo materials, fenestration, insulation and the provision of green infrastructure.
 - The amount of heat entering the building will be reduced by:
- a. Energy efficient facades with appropriate proportions of glazing;
- b. External shading provided by balconies; and
- c. A glazing shading coefficient carefully selected to minimise solar gain in the summer, but also to maximise solar gain in winter.

- 2. Minimise internal heat generation through energy efficient design.
 - a. Heat generation will be minimised through the specification of energy efficient ventilation systems. insulation on pipework and low energy lighting.
- 3. Manage the heat within the building through exposed internal thermal mass and high ceilings.
 - a. Ceiling heights in the development have been maximised within the constraints of the overall building height and massing.
- 4. Passive Ventilation
 - a. Passive ventilation (openable windows) has been incorporated within the development. In addition, there will be a small amount of natural ventilation through infiltration
- 5. Mechanical Ventilation
 - a. There will be a continuous extract from the kitchens and bathrooms in all units.
- 6. Active Cooling Systems
 - a. No comfort cooling is proposed for the development.

3.4 District Heating Network (DHN)

Research into a possible connection to an existing District Heating Network (DHN) has been looked into via the District Heating Installation Map provided by The Association for Decentralised Energy and found that there are no nearby connections. However, some of the leisure and retail facilities are looking at the potential of connecting to the district heating network for the general hospital, this is being investigated further.

3.5 Proposed Heating Infrastructure

The heating infrastructure for the residential development will be via a direct electric approach. This will provide the heating and hot water loads.

For the non-residential areas, the assisted living suites will have fan coil units for the heating and cooling demand. The café and retail areas have heating and cooling provided by a VRF system, while the restaurant will have communal heating and cooling via an Air Source Heat Pump (ASHP) with MVHR units.

The Domestic Hot Water (DHW) demand is all provided by an ASHP with electric top-up.

4. Utilise Low and Zero Carbon (LZC) Technologies.

These measures are those which serve to reduce the overall emissions of the development through the inclusion of renewable technologies such as Ground Source Heat Pump (GSHP), Solar Photovoltaics array (PV panels), besides others.

This section addresses the requirements of Policy CS6 which encourages the use of renewable or low carbon energy technologies.

4.1 Appraisal of Renewable Technologies

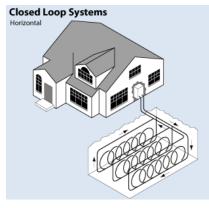
A number of renewable technologies have been appraised in terms of technical and physical feasibility as potential renewable systems for use on the project.

4.1.1 Solar Photovoltaics

Solar PV can be seen as an on-site zero carbon energy source as it will produce useable electrical energy without requiring any energy input. Although the output from the panels is unpredictable and weather dependent, the electrical energy produced by Solar PV panels could be used to provide additional carbon emission reductions and are compatible with the use of other energy generating technologies. Once installed they are very low maintenance and will also have a low visual impact at street level. In addition, this development has suitable south facing roof space available.

Taking the above into account, solar PV is considered an appropriate technology for this development and will be investigated further.

Solar water heating systems use heat from the sun to heat domestic hot water. The system requires solar panels on the roof, ideally south facing, linked to hot water storage cylinders. For solar water panels to be effective the development should have a high hot water demand.


This development has suitable south facing roof space available and has a high hot water demand due to the nature of the development, which initially makes this technology suitable for this development. However, solar water panels are more suited to individual/ standalone dwellings as the hot water produced through the panels will feed directly into the hot water storage for that particular dwelling. For a development like this, solar water panels would therefore not be suitable. The panels have a higher maintenance than PV and they are highly dependent on the weather/season, arguably more so than photovoltaics, leading to unpredictability with the hot water load. In addition, the heat gained from the panels cannot be sold back to the grid and so if the hot water is not used once it has been produced it will eventually be wasted.

Due to the reasons highlighted above, solar water heating panels are therefore not proposed for this development.

Solar photovoltaic (PV) cells generate electricity from the sun's energy. Solid PV panels can be either roof or facade mounted (although solar modules fitted on a south facing facade have only 75% the output of roof mounted modules).

4.1.2 Solar Water Heating Panels

SUSTAINABILITY ENERGY AND SUSTAINABILITY DOCUMENT - REV. 1

4.1.3 Ground Source Heat Pumps

Ground source heat pumps (GSHP) utilise either water extracted from an aquifer (open loop) or water circulated within underground pipework (closed loop) as the heat source in a refrigeration process. This enables them to produce hot water, typically at around 45°C, that can be used as means of space heating in buildings. Due to the relatively constant temperature of the ground at depth (typically 10-14°C in the UK) this produces heat more efficiently in winter than an air source heat pump, and usually with lower carbon emissions than a gas-fired boiler.

Open loop systems require the water extracted to be re-injected into the aquifer at another borehole on another part of the site. A licence from the Environment Agency (EA) is required for both abstraction and discharge

although these licences cannot be obtained until a test borehole has been constructed and the appropriate EA tests undertaken.

Since there is no cooling required for the development, there is an unbalanced heating and cooling demand, therefore this technology is not appropriate.

4.1.4 Biomass Boilers

A biomass boiler uses a natural fuel such as wood chips or wood pellets for combustion. Since it uses a natural resource that can be replanted it is considered as a renewable energy source subject to the distance the fuel is transported. The carbon dioxide emitted from burning biomass is balanced by that absorbed during the fuel's production. Biomass heating therefore approaches a carbon neutral process.

The primary disadvantage of a biomass boiler is that it would require a substantial amount of fuel storage for a development of this size, which would make for an inefficient use of space. Further to this, regular deliveries are required to ensure the boiler works as efficiently and continuously as possible and biomass exhaust gases would require significant treatment to avoid degrading local air quality. In addition, the nature of the fuel within the boiler would require regular cleaning which would increase the downtime of the boiler, whilst also effecting air quality through the emissions.

Due to the reasons highlighted above, biomass boilers are therefore not proposed for the development.

4.1.5 Wind Turbines

Wind turbines use the wind's lift forces to turn aerodynamic blades that turn a rotor thus generating electricity. There are three basic types to consider: horizontal axis (propeller type), vertical access (helical type) and building integrated (where the building design is adapted to suit the wind turbine).

Wind turbines have a significant visual impact and the roof space will be sensitive in townscape terms, which is likely to preclude wind turbines. They can create noise and vibration problems. Additionally, there is limited roof area across the site where clean air flows and good wind speeds can be realised which are vital to delivering a useful electrical output. Even if a

suitable location could be found, the output of a wind turbine and the consequential carbon dioxide emissions will be very limited when compared to the emissions of the whole development.

Due to the reasons highlighted above, wind turbines are therefore not proposed for the development.

4.1.6 Air Source Heat Pumps

Air source heat pumps absorb heat from the outside air, even if the temperature is as low as -15°C. The air from the outside heats a liquid refrigerant, which is then compressed to increase the temperature. This is then condensed back into a liquid and heat is released. The heat can then be used for heating and hot water systems.

The main benefits of ASHPs are that they can provide both heating and cooling as the heat pump can be operated in reverse, and they are suitable for centralised heat networks. They are easy to install (more so than GSHP) and require very little maintenance once installed. However, this solution would require a large amount of outdoor space to accommodate enough ASHP to provide heating and hot water. This would either be at roof level and impact the overall height or number of floor levels or in the landscaping and would be difficult to conceal. Due to the hydraulic restrictions on pipework runs it is likely that the ASHPs would need to be located in a number of different areas to achieve the required pipework runs. This would also increase the bulk and massing of the development, taking away

any space for a proposed PV Array.

The use of ASHPs will also impact on rights of light and outside space for tenants, whilst also being a source of noise.

Taking the above into account, ASHPs will only be considered for certain areas in the scheme, and is not considered an appropriate technology for the whole development.

To summarise, ASHPs will be considered for certain non-domestic spaces such as the restaurant, which will be investigated further. Solar Photovoltaics are considered a suitable technology for this development. Since the Core Strategy encourages LZC energy technologies to reduce the total carbon emissions from the development by 10%, and with other technologies inappropriate due to the reasons highlighted above, these are the only renewable technologies proposed.

After accounting for roof space required for heating and ventilation plant, we have identified 2772 square metres of available roof area for PV panels. This will provide approximately 281.6kWp for the residential units, assuming an efficiency of 0.2 kWp/sqm.

5. Results.

5.1 SAP 2012

With the inclusion of the contribution of ASHP and PV, the estimated reduction in regulated carbon dioxide emissions is approximately 5% below the Part L 2013 compliant baseline scheme for the domestic elements, 1% below the baseline scheme for the non-domestic elements and 5% below the baseline scheme for the site.

Please refer to Appendix A for the SAP DER Worksheets and Appendix B for the BRUKL Output Document.

5.2 SAP 10

It is becoming more widely recognised that energy derived from an electrical power source, will over time, provide a more robust carbon saving due to the decarbonisation of the grid supply. This trend is likely to continue as the carbon factor for electricity continues to reduce.

Grid electricity has significantly decarbonised since the last update of Part L in April 2014. The UK government announced that it will implement the closure of all coal-fired power stations by 2025, this is in line with the increase in renewable power generation.

2017 saw times where low-carbon generation, such as wind, solar and nuclear, generated more energy than coal and gas combined; showing very real progress towards a low-carbon future. In April 2018, Britain went for more than 3 days without the need for coal power and in May 2019 passed a week without the need for this fossil fuel; the first time since 1882.

It is clear that the grid in 2019 is much cleaner than in past years, and so it is therefore a hindrance that our new buildings still utilise the emissions rates of 2014 that give a false position of gas being less green than electricity.

5.2.1 What is a Carbon Factor?

A carbon emission factor (carbon factor) is the average emission rate of a given greenhouse gas for a given source, relative to units of activity.

5.2.2 SAP 10 Carbon Factors

In July 2018 the Government published updated carbon emission factors (SAP 10), demonstrating how the grid is decarbonising.

The table below details the carbon factors for electricity under SAP 2012, SAP 10, Actual (last 3 months), and Actual (last year).

They reflect the general decarbonisation of the grid.

Table 2: Electricity Factors

		Emissions kg	CO _{2e} per kWh	
	SAP 2012 (2014)	SAP 10 (July 2018)	Actual (last 3 months)	Actual Last Year (2018)
Electricity	0.519 ¹	0.233 ²	0.190 ³	0.2254

1: SAP 2012: https://www.bregroup.com/sap/standard-assessment-procedure-sap-2012/

2: SAP 10 (please note this is just the carbon factors not the SAP 10 methodology itself): https://www.bregroup.com/sap/sap10/ 3: Britain's Electricity Demand: https://electricinsights.co.uk/#/dashboard?period=3-months&start=2019-09-18&& k=96iyde 4. SSE's fuel mix for last year that confirms the national average of 0.225 for 2017-2018

This clearly demonstrates that the use of SAP 10 carbon factors is appropriate for current day energy modelling.

5.2.3 SAP 10 Results

The overall predicted reduction in CO_2 emissions from the baseline development model using SAP 10 carbon factors is approximately 53% for the domestic elements and 1% for the non-domestic elements, which represents a total site wide reduction of 48% and an annual saving of approximately 462 tonnes of CO₂ (see Figure 3 below).

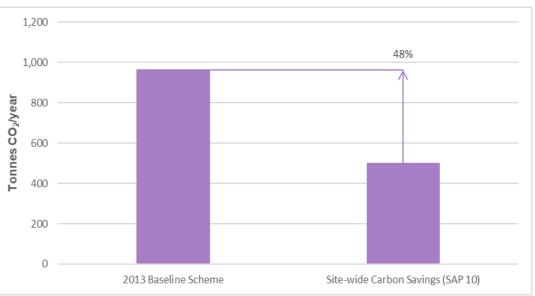


Figure 3: Proposed Development Regulated Carbon Dioxide Emissions (SAP 10 Carbon Factors)

5.3 Site Wide Energy from Low and Zero Carbon (LZC) Energy Sources

The Core Strategy details that The South East Plan encourages larger housing and commercial schemes to provide at least 10% of the development's energy from renewable sources. As a result, this development has implemented ASHP and PV panels throughout the site. Calculations have confirmed that 14% of the development's energy will come from LZC energy sources.

Appendix C shows the calculation of energy from LZC energy sources.

6. Sustainability.

Sustainability has been a key design consideration for this development from the onset of the project and consideration of the impact of design proposals and measures on the sustainable credentials of the development has been made throughout the design development to date and will continue throughout the design and construction process.

The following is a summary of the key sustainability issues that form the overall strategy for the project.

6.1 Management

To encourage an integrated design process, the project delivery stakeholders will meet to identify and define roles, responsibilities for each of the key phases of project delivery.

To ensure that the construction site is managed in an environmentally and socially considerate, responsible and accountable manner, the contractor will be selected with consideration of their ability to comply with the Considerate Constructors Scheme. The contractor will be required to significantly exceed 'compliance' with the criteria of the scheme. The Principal Contractor and subcontractors' energy and potable water consumption will be monitored and recorded.

6.2 Health and Wellbeing

The development will be designed to encourage a healthy and safe internal and external environment.

Lighting controls will be provided to all external lighting located within the development and will be designed to enhance the external environment.

All areas of the buildings acoustic performance, including plant spaces will be attenuated in order to meet the appropriate standards for this type of building.

6.3 Energy

An Energy Strategy has been devised in line with The Core Strategy 2007. Please refer to Sections 4 and 5 of this report for further details on energy performance.

A Direct Electric approach is the proposed strategy for the heating and hot water for the development.

Energy efficient light fittings will be installed for all external areas of the development.

6.4 Transport

The site is located within walking distance of Epsom town centre and within 100m of the nearest bus stop.

Secure, covered spaces for bicycles and scooter storage will be provided for residents and visitors.

6.5 Water

Reducing the consumption of potable water will be a significant consideration in the design process. Water use will be reduced as much as possible mainly through the specification of efficient sanitary ware.

A water meter will be specified on the mains water supply to the building, ensuring that water consumption can be monitored and managed and therefore encourage reductions.

6.6 Materials

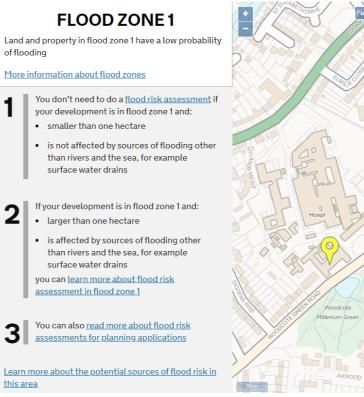
Materials with low environmental impact will be implemented where feasible. Recycled, sustainable and locally sourced materials will be used where possible.

As part of the design, vulnerable parts of the building will be protected from damage, for example doors in areas of high pedestrian traffic.

Thermal insulation used in the building fabric and services will be selected with consideration of their embodied environmental impact relative to its thermal properties.

6.7 Waste

A resource plan will be developed to minimise construction waste related to on-site construction and dedicated off-site manufacture/fabrication.


Communal refuse and recyclable stores will be easily accessible to all users including children and wheelchair users, and located on hard, level surface. Storage facilities for waste and recycling will be provided in accordance with, as a minimum, BS5906.

6.8 Land Use and Ecology

An improvement in ecological value is being targeted for the site with external landscaped areas provided for the residents.

6.9 Pollution

The site is located in Flood Zone 1. Figure 4 below shows the environmental agency flood mapping, which contains more information on flood zones and flood risk assessments.

Figure 4 Environment Agency Flood Mapping

The materials used for the landscaping will be selected with consideration of reducing the flood risk. Such materials include permeable paving and other porous finishes. The types of materials and finishes will help promote infiltration into the ground.

Any external lighting provided will be designed with the consideration of reducing night time light pollution.

ull screen 🖌 🎽	
EXANA SIG	
7XXXXX	V
No Vol	Selected
XX	
YIN	location
Y KK	
4	
21	
Epse	Flood zone 3
Sports	
Sports	
Pav	
1 dv	Areas benefiting
	from flood
	defences
	0122
Davi V	
Pav	Flood zone 2
	1 22 11
Epsom	
Sports CLub	Flood zone 1
sports cros	
Pav	
	Flood defence
	r tood derence
	7 <u>_</u>
18/ 18/	
	1.1.0.0
	Main river
1/1/	
1811	Flood storage
	area
TSI MA	
Len M	
An 1/3	
THE LIE	
Jac Jon 15	
115/	
1741	
ITATA	

7. Conclusion.

An energy assessment has been carried out to show compliance with of The Core Strategy 2007. The assessment showed that a reduction in carbon emissions of 48% over a Part L 2013 compliant development can be achieved. This reduction in carbon dioxide emissions will be achieved through the incorporation of passive and active energy efficiency measures and renewable technologies.

A range of sustainable measures, such as those highlighted below have been incorporated into this development.

- Project delivery stakeholders will meet to identify and define roles, responsibilities of each of the key phases of project delivery;
- The contractor will be selected with consideration of their ability to comply with the Considerate Constructors Scheme;
- An energy assessment has been carried out in line with the requirements of The Core Strategy 2007;
- Where external lighting is required, energy efficient luminaires will be specified, and they will be automatically controlled for the prevention of operation during daylight hours;
- Any external lighting will be designed to reduce night time light pollution;
- The site benefits from close proximity to Epsom Town Centre and covered cycle and mobile scooter storage;
- Water consumption will be reduced through the specification of efficient sanitary ware;
- Materials with a low environmental impact will be implemented where feasible;
- Recycled, sustainable and locally sourced materials will be used where possible;
- All timber and timber-based products will be legally harvested and traded; and
- A resource plan will be developed to minimise construction waste related to on-site construction and dedicated off-site manufacture / fabrication.

SUSTAINABILITY ENERGY AND SUSTAINABILITY DOCUMENT – REV. 1

Appendix A: Sample SAP DER Worksheets.

Design SÁP elmhurst energy

Π

Property Reference	Type 01F				Issued on Date	17/12/2019
Assessment	V02		Pro	op Type Ref		
Reference				_		
Property	Type 01F					
SAP Rating		78 C	DER	26.89	TER	25.64
Environmental		80 C	% DER <ter< th=""><th></th><th>-4.87</th><th></th></ter<>		-4.87	
CO ₂ Emissions (t/ye	ar)	1.62	DFEE	47.04	TFEE	49.51
General Requireme	nts Compliance	Fail	% DFEE <tfee< th=""><th></th><th>4.99</th><th></th></tfee<>		4.99	
Assessor Details	Mr. Josh Elliott, Josh Elliott, T	el: 077172201	.67, JoshElliott@ho	arelea.com	Assessor ID	W974-0001
Client						

FULL SAP CALCULATION PRINTOUT Calculation Type: New Build (As Designed)

REGULATIONS COMPLIANCE	REPORT - Approved	Document L1	A, 2013 Edition, Er
REGULATIONS COMPLIANCE REPORT - Approv	red Document L1A, 2013 Ed	dition, England	
DWELLING AS DESIGNED			
Ground-floor flat, total floor area 78	3 m²		
This report covers items included with It is not a complete report of regulat	tions compliance.		
La TER and DER Yuel for main heating:Electricity Yuel factor:1.55 (electricity) Marget Carbon Dioxide Emission Rate (7 Wwelling Carbon Dioxide Emission Rate Excess emissions =1.25 kgCO□/m ² (4.99	rER) 25.64 kgCO□/m² (DER) 26.89 kgCO□/m²Fail %)	L	
lb TFEE and DFEE Target Fabric Energy Efficiency (TFEE) Dwelling Fabric Energy Efficiency (DFF	SE)47.0 kWh/m²/yrOK		
2 Fabric U-values Element Average External wall 0.15 (max. 0.30) Party wall 0.00 (max. 0.20) Floor 0.13 (max. 0.25) Roof (no roof) Openings 1.40 (max. 2.00) -2 Thermal bridging	Highest 0.15 (max. 0.70) - 0.13 (max. 0.70) 1.40 (max. 3.30)	OK OK OK	
Thermal bridging calculated from lines			
3 Air permeability Air permeability at 50 pascals: Maximum			OK
Main heating system: Panel, convector or radiant heaters Secondary heating system:	Room heaters - Electri None		
Permitted by DBSCG 1.85 Primary pipework insulated:	Measured cylinder loss OK No primary pipework	s: 1.18 kWh/day	
6 Controls Space heating controls:	Programmer and room th		OK
Hot water controls:	Cylinderstat		OK
7 Low energy lights Percentage of fixed lights with low-er Minimum	nergy fittings:100% 75%		OK
8 Mechanical ventilation Continuous supply and extract system Specific fan power:	0.53		
Maximum MVHR efficiency:	1.5 90%		OK
Minimum:	70%		OK
Windows facing South East: Air change rate:	Medium Average 3.65 m², No overhang 14.58 m², No overhang 2.00 ach Dark-coloured curtain		
10 Key features Party wall U-value	0.00 W/m ² K 0.00 W/m ² K 3.0 m ³ /m ² h 0.53 kW		

elmhurst energy

CALCULATION OF DWELLING EMISSIONS FOR REGULATIONS COMPLIANCE 09 Jan 2014

	2012 WORKSHEET FOR New Build (As JLATION OF DWELLING EMISSIONS FO	, January 2014) 09 Jan 2014	
1 03	erall dwelling dimensions		

		Area	Store	ey height		Volume
		(m2)		(m)		(m3)
Ground floor		77.6500 (1b)	х	2.7000 (2b)	=	209.6550 (1b) - (3b)
Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e)(1n)	77.6500					(4)
Dwelling volume		(3a)+(3b)+(3c)·	+(3d)+(3e)(3	n) =	209.6550 (5)

Number of intermittent fans Number of passive vents			ō		heating						
Number of open flues Number of intermittent fans Number of passive vents Number of flueless gas fires			0	+	ō	+	0 =		0 * 40 =	0.0000	(68
Number of passive vents			0	+	0	+	0 =		0 * 20 =	0.0000	(61
									0 * 10 =		
Jumber of flueless are fires									0 * 10 =		
Valiber of fideress gas files									0 * 40 =	0.0000) (7
Infiltration due to chimneys, f Pressure test	ues and fans	= (6a)+(6b)	+(7a)+(7b)+	(7c) =				0.0000		ges per hour 0.0000 Yes) (8)
leasured/design AP50										3.0000	
infiltration rate										0.1500	
Number of sides sheltered										2	2 (1)
						(20) = 1 -				
Shelter factor Infiltration rate adjusted to i	clude shelter	factor				([0.075 x) = (18) x			
infiltration rate adjusted to i			Мал	Jun			(21) = (18) x	(20) =	0.1275	
infiltration rate adjusted to i Jan Feb	Mar	Apr	May	Jun 3 8000	Jul 3 8000	Aug	(21 Sep) = (18) x Oct	(20) = Nov	0.1275 Dec	i (2
Infiltration rate adjusted to i Jan Feb Nind speed 5.1000 5.0	Mar 00 4.9000	Apr 4.4000	4.3000	3.8000	3.8000	Aug 3.7000	(21 Sep 4.0000) = (18) x Oct 4.3000	(20) = Nov 4.5000	0.1275 Dec 0 4.7000) (2
Infiltration rate adjusted to i Jan Feb Jind speed 5.1000 5.0 Jind factor 1.2750 1.2	Mar 00 4.9000	Apr				Aug	(21 Sep) = (18) x Oct	(20) = Nov	0.1275 Dec 0 4.7000) (2
nfiltration rate adjusted to i Jan Feb Mind speed 5.1000 5.0 Mind factor 1.2750 1.2 dj infilt rate	Mar 00 4.9000 00 1.2250	Apr 4.4000 1.1000	4.3000 1.0750	3.8000 0.9500	3.8000 0.9500	Aug 3.7000 0.9250	(21 Sep 4.0000 1.0000) = (18) x Oct 4.3000 1.0750	(20) = Nov 4.500(1.125(0.1275 Dec 0 4.7000 0 1.1750) (2:) (2:
nfiltration rate adjusted to i Jan Fek ind speed 5.1000 5.0 ind factor 1.2750 1.2 dj infilt rate 0.1626 0.1	Mar 00 4.9000 00 1.2250 94 0.1562	Apr 4.4000 1.1000 0.1403	4.3000	3.8000	3.8000	Aug 3.7000	(21 Sep 4.0000) = (18) x Oct 4.3000	(20) = Nov 4.5000	0.1275 Dec 0 4.7000 0 1.1750) (2:) (2:
nfiltration rate adjusted to i Jan Feb ind speed 5.1000 5.0 ind factor 1.2750 1.2 dj infilt rate	Mar 00 4.9000 00 1.2250 94 0.1562	Apr 4.4000 1.1000 0.1403	4.3000 1.0750	3.8000 0.9500	3.8000 0.9500	Aug 3.7000 0.9250	(21 Sep 4.0000 1.0000) = (18) x Oct 4.3000 1.0750	(20) = Nov 4.500(1.125(0.1275 Dec 0 4.7000 0 1.1750) (2) (2) (2 3 (2

Lement				Gross	Openings	Net	Area	U-value	A x U		value	A x K	
				m2	m2		m2	W/m2K	W/K		J/m2K	kJ/K	
pening Type 1)					2300	1.3258	24.1686				(27
eat Loss Floo							6500	0.1300	10.0945				(28
kternal Wall				52.6300	18.2300	34.	4000	0.1500	5.1600				(29
otal net area	of externa	l elements	Aum(A, m2)			130.	2800						(31
abric heat lo	ss, W/K = S	um (A x U)						30) + (32) =					(3
o Corridor						б.	3400	0.0000	0.0000				(3
Dwelling						45.	9600	0.0000	0.0000				(3
arty Ceilings	1					77.	6500						(3
otal fabric h entilation he		culated mor	thlv (38)m	= 0.33 x (2	(5) m x (5)					(55)	+ (36) =	54.5271	()
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
38)m	19.3764	19.1559	18,9354	17.8327	17.6122	16.5095	16.5095	16.2890	16.9506	17.6122	18.0533	18.4943	(3
	coeff												
eat transfer	73.9035	73.6830	73.4624	72.3598	72.1393	71.0366	71.0366	70.8161	71.4777	72.1393	72.5803	73.0214	(3)
eat transfer												72.3047	(3
eat transfer verage = Sum(
	39)m / 12 =												
verage = Sum(39)m / 12 = Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
verage = Sum(39)m / 12 =		Mar 0.9461	Apr 0.9319	May 0.9290	Jun 0.9148	Jul 0.9148	Aug 0.9120	Sep 0.9205	Oct 0.9290	Nov 0.9347	0.9404	
verage = Sum(LP LP (average)	39)m / 12 = Jan	Feb											
verage = Sum(39)m / 12 = Jan	Feb										0.9404	(4

4. Water heat	ing energy i	requirement:	s (kWh/year)									
Assumed occup Average daily		use (litres	/day)									2.4168 91.5980	
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Daily hot wat	er use												
	100.7578	97.0939	93.4300	89.7661	86.1021	82.4382	82.4382	86.1021	89.7661	93.4300	97.0939	100.7578	(44)
Energy conte	149.4210	130.6845	134.8547	117.5696	112.8108	97.3472	90.2065	103.5132	104.7495	122.0755	133.2549	144.7062	(45)
Energy conten	t (annual)									Total = St	um (45) m =	1441.1937	(45)
Distribution	loss (46)m	$= 0.15 \times ($	45)m										
	22.4131	19.6027	20.2282	17.6354	16.9216	14.6021	13.5310	15.5270	15.7124	18.3113	19.9882	21.7059	(46)

Page 3 of 8

Regs Region: England Elmhurst Energy Systems SAP2012 Calculator (Design System) version 4.11r11

FULL SAP CALCULATION PRINTOUT Calculation Type: New Build (As Designed)

CALCULATION OF DWELL

CALCULAT		DWELLIN	g emissi	ONS FOF	R REGULA	TIONS CO	OMPLIAN	CE 09	Jan 2014				
later storage	loss:												
Store volume a) If manufa Temperature	factor fro	m Table 2b	actor is kn	own (kWh/c	lay):							145.0000 1.1800 0.6000	(48 (49
Enter (49) or Potal storage	loss											0.7080	
If cylinder c		icated sola				21.2400	21.9480	21.9480	21.2400		21.2400	21.9480	
rimary loss	0.0000		0.0000	0.0000	0.0000	21.2400 0.0000	21.9480 0.0000	21.9480 0.0000	21.2400 0.0000	21.9480 0.0000	21.2400 0.0000	21.9480 0.0000	
	171.3690	150.5085	156.8027	138.8096	134.7588					144.0235		166.6542	
-	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000 Solar inpu		0.0000 months) = Si	0.0000 um(63)m =	0.0000	
Output from w	/h 171.3690	150.5085	156.8027	138.8096	134.7588	118.5872	112.1545			144.0235			
leat gains fr	om water he 67.2409		nonth 62.3976	56.0839	55.0680	49.3599	47.5521	51.9766	51.8212	h/year) = Si 58.1485	61.2993	65.6732	
. Internal g													
Metabolic gai													
(66) m		Feb 120.8380		Apr 120.8380	May 120.8380	Jun 120.8380	Jul 120.8380	Aug 120.8380	Sep 120.8380	Oct 120.8380	Nov 120.8380	Dec 120.8380	(6
ighting gain.	19.1192	16.9815	13.8103	10.4553	7.8154	6.5981	7.1295	9.2672	12.4384	15.7934	18.4332	19.6506	(6
appliances ga	214.4590	216.6845	211.0765	199.1378	184.0673	169.9032	160.4407	158.2153	163.8232	175.7620	190.8324	204.9965	(6
Cooking gains	35.0838	35.0838	35.0838	35.0838	35.0838	35.0838	35.0838	35.0838	35.0838	35.0838	35.0838	35.0838	
Pumps, fans Josses e.g. e	0.0000 vaporation	0.0000 (negative v	alues) (Tab	0.0000 le 5)	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
Nater heating	gains (Tab	le 5)			-96.6704			-96.6704	-96.6704	-96.6704	-96.6704	-96.6704	
otal interna	l gains	88.2616		77.8943	74.0161	68.5555	63.9140	69.8610	71.9739	78.1566	85.1379	88.2705	
	383.2071	381.1789	368.0059	346.7387	325.1503	304.3082	290.7356	296.5948	307.4870	328.9633	353.6549	372.1689	(')
5. Solar gain	s												
[Jan]				rea m2	Solar flux Table 6a	Speci	g fic data Table 6b	Specific	FF data	Acces facto Table	br	Gains W	
Northeast Southeast			3 6	500			0.3500		.8000	0.77	00	7.9911 104.0935	
Solar gains Fotal gains	112.0846	193.5759	271.9094	348.7264	401.3890	403.2310	386.7832	346.7692					
. Mean inter													
Cemperature d Jtilisation f	actor for g	ains for li	ving area,	nil,m (see	Table 9a)		T 1	2	Car	Ost	Nos	21.0000	(8
au		51.2283	51.3821	52.1651	May 52.3245			Aug 53.3022	Sep 52.8088 4.5206	Oct 52.3245	Nov 52.0066	Dec 51.6924	
lpha til living a	rea				4.4883			4.5535		4.4883	4.4671	4.4462	
IIT	0.9892	0.9786	0.9553	0.8977 20.5797	0.7838	0.6089	0.4538 20.9915	0.4948 20.9875	0.7260	0.9213	0.9794 20.1133	0.9914	
nn h 2 ntil rest of 1	20.1237	20.1261	20.2435	20.5797 20.1405	20.8302	20.1549	20.9915	20.9875	20.9106	20.1429	20.133	20.1333	
IT 2	0.9868 18.4645	0.9739 18.7548	0.9454	0.8752 19.6390	0.7393 19.9665	0.5396 20.1234	0.3701 20.1505	0.4092 20.1504	0.6611 20.0717	0.8991 19.6560	0.9741 18.9861	0.9895 18.4207	
iving area f IIT		19.3196	19.6681	20.0795	20.3709	20.5151	20.5443	20.5424		Living area 20.0907		0.4683	(9
'emperature a djusted MIT	djustment	19.3196	19.6681	20.0795	20.3709	20.5151	20.5443	20.5424	20.4645	20.0907	19.5139	0.0000	
2													
		ment											
. Space heat			Mar	Apr	May 0.7518	Jun 0.5699	Jul 0.4091 277.1887	Aug 0.4489 288.8228	Sep 0.6864 415.8592	Oct 0.8975 488.9628	Nov 0.9692 473.3567	Dec 0.9863 461.3528	(9
3. Space heat Jtilisation Jseful gains	Jan 0.9830 486.8500	Feb 0.9684 556.5970	0.9392 600.9898	0.8734	546.2394	403.2462							
tilisation seful gains	Jan 0.9830 486.8500 4.3000 e W	0.9684 556.5970 4.9000	0.9392 600.9898 6.5000	607.4025 8.9000	546.2394 11.7000	14.6000	16.6000	16.4000	14.1000	10.6000	7.1000	4.2000	
tilisation seful gains kat temp. leat loss rat	Jan 0.9830 486.8500 4.3000 e W 1091.6853 1.0000	0.9684 556.5970	0.9392 600.9898	607.4025	546.2394				14.1000 454.9209 0.0000	10.6000 684.6522 1.0000	7.1000 901.0060 1.0000	4.2000 1083.0648 1.0000	(9
3. Space heat Jtilisation Jseful gains Zxt temp. Heat loss rat 40nth fracti Space heating Space heating	Jan 0.9830 486.8500 4.3000 e W 1091.6853 1.0000 kWh 449.9975	0.9684 556.5970 4.9000 1062.4785	0.9392 600.9898 6.5000 967.3607 1.0000	607.4025 8.9000 808.9459	546.2394 11.7000 625.5144	14.6000 420.1900	16.6000 280.1882	16.4000 293.3466	454.9209	684.6522	901.0060	1083.0648	(9 (9 (9

elmhurst energy

CALCULATION OF DWELLING EMISSIONS FOR REGULATIONS COMPLIANCE 09 Jan 2014

8c. Space cooling requirement

Not applicable

9a. Energy requ	uirements -	Individua	l heating s	systems, inc	luding micr	O-CHP							
Fraction of spa Fraction of spa Efficiency of r Efficiency of s Space heating p	ace heat fr ace heat fr main space secondary/s	om seconda om main sy heating sy upplementa	ry/suppleme stem(s) stem 1 (in	entary syste %)								0.0000 1.0000 100.0000 0.0000 2182.6757	(202) (206) (208)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Space heating 1	449.9975	339.9524	272.5799		58.9806	0.0000	0.0000	0.0000	0.0000	145.5929	307.9075	462.5537	(98)
	100.0000	100.0000	100.0000	1) 100.0000	100.0000	0.0000	0.0000	0.0000	0.0000	100.0000	100.0000	100.0000	(210)
Space heating i	449.9975	339.9524	stem) 272.5799	145.1113	58.9806	0.0000	0.0000	0.0000	0.0000	145.5929	307.9075	462.5537	(211)
Water heating :	requirement 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(215)
Water heating													
	171.3690	150.5085	156.8027	138.8096	134.7588	118.5872	112.1545	125.4612	125.9895	144.0235	154.4949	166.6542	
	100.0000	100.0000	100.0000	100.0000	100.0000	100.0000	100.0000	100.0000	100.0000	100.0000	100.0000	100.0000 100.0000	
	171.3690		156.8027	138.8096	134.7588	118.5872	112.1545	125.4612	125.9895	144.0235	154.4949	166.6542	
Water heating f Annual totals b	kWh/year											1699.6137	
Space heating f Space heating f	fuel - main fuel - seco	system ndary										2182.6757 0.0000	
Electricity for (BalancedWi mechanical of Total electrici Electricity for Energy saving/o	ithHeatReco ventilation ity for the r lighting	fans (SFP above, kW (calculate	= 0. h/year d in Append			= 0.6625)						169.4537 169.4537 337.6507	(231)
PV Unit 0 (0.80 Total delivered	0 * 0.53 *	1080 * 0.8	0) =	ices m , N an	u y)					-366.1748		-366.1748 4023.2190	
12a. Carbon dio	oxide emiss	ions - Ind	ividual hea	ting system	s including	micro-CHP							
Space heating - Space heating - Water heating Space and water Pumps and fans	- main syst - secondary (other fuel r heating	em 1						Energy kWh/year 2182.6757 0.0000 1699.6137 169.4537		ion factor kg CO2/kWh 0.5190 0.0000 0.5190 0.5190	k	Emissions cg CO2/year 1132.8087 0.0000 882.0995 2014.9082 87.9464	(261) (263) (264) (265) (267)
Energy for ligh	hting							337.6507		0.5190		175.2407	(268)
Energy saving, PV Unit Total CO2, kg/y Dwelling Carbor	year							-366.1748		0.5190		-190.0447 2088.0507 26.8900	(272)
16 CO2 EMISSION DER Total Floor Are Assumed number CO2 emission f CO2 emissions f Total CO2 emissions Residual CO2 en Additional all Resulting CO2 en Net CO2 emission	ea of occupan actor in Ta from applia from cookin sions missions of owable elec emissions o	ts ble 12 for nces, equa g, equatio fset from tricity ge	electricit tion (L14) n (L16) biofuel CHH neration, }	y displaced Wh/m²/year	from grid		fy generati	ON TECHNOLO	GIES		TFA N EF	26.8900 77.6500 2.4168 0.5190 16.3662 2.2795 45.5357 0.0000 0.0000 0.0000 45.5357	ZC2 ZC3 ZC4 ZC5 ZC6 ZC7

Regs Region: England Elmhurst Energy Systems SAP2012 Calculator (Design System) version 4.11r11

FULL SAP CALCULATION PRINTOUT Calculation Type: New Build (As Designed)

CALCULATION OF TARGET EMISSIONS 09 Jan 2014

1. Overall dwel	ling dimen	sions					
Ground floor Total floor are Dwelling volume		a)+(1b)+(1c	:)+(1d)+(1e)	(ln)	7	7.6500	
2. Ventilation					main		
Number of chimn	01/6				heating 0		ecor hea
Number of open	flues				0	+	
Number of inter Number of passi Number of fluel	ve vents						
To Clinear biographics	h /			(6-) (6-)		7-)	
Infiltration du Pressure test Measured/design	AP50	eys, īlues	and Ians	= (6a) + (6b)	+(/a)+(/b)+(/c) =	
Infiltration ra Number of sides							
Shelter factor Infiltration ra	te adjuste	d to includ	le shelter f	actor			
	Jan	Feb	Mar	Apr	May	Jun	
Wind speed Wind factor Adj infilt rate	5.1000 1.2750	5.0000 1.2500	4.9000 1.2250	4.4000 1.1000	May 4.3000 1.0750	3.8000 0.9500	
Effective ac		0.4177 0.5872	0.4093 0.5838	0.3675 0.5675	0.3592 0.5645	0.3174 0.5504	
3. Heat losses					Openings m2	Ne	etAre m
TER Opening Typ Heat Loss Floor External Wall 1 Total net area Fabric heat los	1 of externa	l elements		52.6300	18.2300	77 34	230 .650 .400 .280 (
Thermal mass pa Thermal bridges Total fabric he	rameter (T (Sum(L x	MP = Cm / T					
Ventilation hea	t loss cal Jan	culated mon Feb	thly (38)m Mar	= 0.33 x (2 Apr	25)m x (5) May 39.0561	Jun	
Heat transfer c	oeff				39.0561 91.6452		
Average = Sum(3	93.4604 9)m / 12 =	93.2100	92.9776	91.8552	91.6452	90.00/0	ç
HLP	Jan 1.2036	Feb 1.2005	Mar 1.1974	Apr 1.1829	May 1.1802	Jun 1.1676	
HLP (average) Days in month							
	31	28	31	30	31	30	
4. Water heatin							
Assumed occupan Average daily h	су						
	Jan	Feb	Mar	Apr	May	Jun	
Daily hot water	use 100.7578	97.0939	93.4300	89.7661	86.1021 112.8108	82.4382	8
Energy content	(annual)			117.5696	112.8108	97.3472	ç
Distribution lo Water storage l	22.4131			17.6354	16.9216	14.6021	1
Store volume a) If manufact Temperature f Enter (49) or (actor from	Table 2b	ctor is kno	own (kWh/da	iy):		
	oss (55	*					

-----Storey height Area Volume (m2) (m) (m3) 77.6500 (1b) x 2.7000 (2b) = 209.6550 (1b) - (3b) $(3a) + (3b) + (3c) + (3d) + (3e) \dots (3n) = 209.6550$ (5) ondary eating 0 other total m3 per hour 0.0000 (6a) 0.0000 (6b) 30.0000 (7a) 0.0000 (7b) 0.0000 (7c) $\begin{array}{ccccccc} 0 & * & 40 & = \\ 0 & * & 20 & = \\ 3 & * & 10 & = \\ 0 & * & 10 & = \\ 0 & * & 40 & = \end{array}$ 0 = Air changes per hour 30.0000 / (5) = 0.1431 (8) Yes 5.0000 0.3931 (18) 2 (19) $(20) = 1 - [0.075 \times (19)] = (21) = (18) \times (20) =$ 0.8500 (20) 0.3341 (21) Jul 3.8000 0.9500 Aug 3.7000 0.9250 Sep 4.0000 1.0000 Oct 4.3000 1.0750 Dec 4.7000 (22) 1.1750 (22a) Nov 4.5000 1.1250 0.3091 0.5478 0.3341 0.5558 0.3592 0.5645 0.3926 (22b) 0.5771 (25) 0.3174 0.3759 0.5706 A x U W/K 24.1686 10.0945 6.1920 U-value W/m2K 1.3258 0.1300 0.1800 A x K kJ/K K-value kJ/m2K m2 (27) (28a) (29a) (31) (33) (26)...(30) + (32) = 40.4551 250.0000 (35) 12.1340 (36) 52.5891 (37) (33) + (36) = Jul 38.0786 Aug Sep Oct 37.8975 38.4551 39.0561 Dec 39.9251 (38) Nov 39.4810 90.6676 90.4866 91.0442 91.6452 92.0700 92.5142 (39) 91.8542 (39) Aug 1.1653 Dec 1.1914 (40) 1.1829 (40) Sep 1.1725 Oct 1.1802 1.1676 1.1857 31 (41) 31 31 30 31 30 _____ 2.4168 (42) 91.5980 (43) Dec Jul Aug Sep Oct Nov 93.4300 97.0939 122.0755 133.2549 Total = Sum(45)m = 100.7578 (44) 144.7062 (45) 1441.1937 (45) 82.4382 90.2065 86.1021 103.5132 89.7661 104.7495 15.5270 15.7124 18.3113 19.9882 21.7059 (46) 13.5310 145.0000 (47) 1.3665 (48) 0.5400 (49) 0.7379 (55) 22.8747 20.6610 22.8747 22.1368 22.8747 22.1368 22.8747 22.8747 22.1368 22.8747 22.1368 22.8747 (56)

Design SAP

Π

elmhurst energy

CALCULATION OF TARGET EMISSIONS 09 Jan 2014

If cylinder c	ontains ded:	icated sola:	r storage										
	22.8747	20.6610	22.8747	22.1368	22.8747	22.1368	22.8747	22.8747	22.1368	22.8747	22.1368	22.8747	(57)
Primary loss	23.2624	21.0112	23.2624	22.5120	23.2624	22.5120	23.2624	23.2624	22.5120	23.2624	22.5120	23.2624	(59)
Total heat re	quired for w	water heatin	ng calculate	ed for each	month								
	195.5580	172.3567	180.9918	162.2184	158.9479	141.9960	136.3435	149.6503	149.3983	168.2125	177.9037	190.8433	(62)
Solar input	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(63)
								Solar inpu	ut (sum of m	months) = Su	.m(63)m =	0.0000	(63)
Output from w	/h												
	195.5580	172.3567	180.9918	162.2184	158.9479	141.9960	136.3435	149.6503	149.3983	168.2125	177.9037	190.8433	(64)
								Total pe	er year (kWl	h/year) = Su	.um (64) m =	1984.4205	(64)
Heat gains fr	om water hea	ating, kWh/m	nonth										
	86.5921	76.7904	81.7489	74.8109	74.4193	68.0870	66.9033	71.3278	70.5482	77.4998	80.0263	85.0245	(65)

5. Internal gains (see Table 5 and 5a) Metabolic gains (Table 5), Watts Mar Apr Mav Jun Jul

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
(66)m	120.8380	120.8380	120.8380	120.8380	120.8380	120.8380	120.8380	120.8380	120.8380	120.8380	120.8380	120.8380	(66)
Lighting gains	(calculate	d in Append	dix L, equat	ion L9 or 1	L9a), also :	see Table 5							
	19.1192	16.9815	13.8103	10.4553	7.8154	6.5981	7.1295	9.2672	12.4384	15.7934	18.4332	19.6506	(67)
Appliances gai	ins (calcula	ted in Appe	endix L, equ	ation L13	or L13a), a	lso see Tabl	Le 5						
	214.4590	216.6845	211.0765	199.1378	184.0673	169.9032	160.4407	158.2153	163.8232	175.7620	190.8324	204.9965	(68)
Cooking gains	(calculated	l in Append:	ix L, equati	on L15 or 3	L15a), also	see Table 5	5						
	35.0838	35.0838	35.0838	35.0838	35.0838	35.0838	35.0838	35.0838	35.0838	35.0838	35.0838	35.0838	(69)
Pumps, fans	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	(70)
Losses e.g. ev	vaporation (negative va	alues) (Tabl	.e 5)									
	-96.6704	-96.6704	-96.6704	-96.6704	-96.6704	-96.6704	-96.6704	-96.6704	-96.6704	-96.6704	-96.6704	-96.6704	(71)
Water heating	gains (Tabl	.e 5)											
	116.3873	114.2714	109.8775	103.9041	100.0259	94.5652	89.9238	95.8707	97.9837	104.1663	111.1476	114.2802	(72)
Total internal	l gains												
	412.2169	410.1887	397.0156	375.7485	354.1600	333.3179	319.7454	325.6046	336.4967	357.9731	382.6647	401.1787	(73)

6. Solar gain	15												
[Jan]			A	rea m2	Solar flux Table 6a W/m2		g fic data Table 6b	Specific or Tabi		Acces facto Table (or	Gains W	
Northeast Southeast			3.65 14.58		11.2829 36.7938		0.6300 0.6300		.7000 .7000	0.770		12.5860 163.9473	
Solar gains Total gains	176.5333 588.7502	304.8821 715.0708	428.2573 825.2729	549.2441 924.9925	632.1877 986.3478	635.0888 968.4067	609.1836 928.9290	546.1614 871.7660	469.9769 806.4736	339.9537 697.9268	212.2075 594.8722	150.5831 551.7618	

Temperature d	luring heatin	g periods i	n the livin	g area from	Table 9, 1	Th1 (C)						21.0000	(85
Utilisation f	actor for ga	ins for liv	ing area, n	il,m (see 1	able 9a)								
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
au	57.6968	57.8477	57.9963	58.7050	58.8395	59.4739	59.4739	59.5929	59.2280	58.8395	58.5680	58.2869	
lpha	4.8465	4.8565	4.8664	4.9137	4.9226	4.9649	4.9649	4.9729	4.9485	4.9226	4.9045	4.8858	
til living a	irea												
	0.9945	0.9855	0.9623	0.8973	0.7653	0.5794	0.4257	0.4711	0.7143	0.9314	0.9874	0.9959	(86
IT	19.8318	20.0459	20.3357	20.6616	20.8828	20.9769	20.9958	20.9933	20.9372	20.6355	20.1679	19.7939	(87
h 2	19.9171	19.9196	19.9221	19.9337	19.9358	19.9460	19.9460	19.9478	19.9421	19.9358	19.9315	19.9269	(88
til rest of	house												
	0.9926	0.9809	0.9503	0.8665	0.7047	0.4923	0.3257	0.3666	0.6283	0.9035	0.9825	0.9945	(89
IIT 2	18.3818	18.6932	19.1078	19.5604	19.8307	19.9320	19.9446	19.9454	19.8976	19.5394	18.8809	18.3336	(90
iving area f	raction								fLA =	Living area	/ (4) =	0.4683	(91
IIT 'emperature a	19.0608 diustment	19.3266	19.6827	20.0760	20.3233	20.4213	20.4368	20.4360	20.3844	20.0527	19.4836	19.0174	
djusted MIT	19.0608	19.3266	19.6827	20.0760	20.3233	20.4213	20.4368	20.4360	20.3844	20.0527	19.4836	19.0174	

8. Space heating requirement

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Utilisation	0.9907	0.9777	0.9471	0.8711	0.7280	0.5325	0.3727	0.4157	0.6661	0.9071	0.9799	0.9930	(94)
Useful gains	583.2672	699.0921	781.6560	805.7446	718.0869	515.6779	346.2132	362.3889	537.2114	633.0806	582.9110	547.8791	(95)
Ext temp.	4.3000	4.9000	6.5000	8.9000	11.7000	14.6000	16.6000	16.4000	14.1000	10.6000	7.1000	4.2000	(96)
Heat loss rate	e W												
	1379.5462	1344.8026	1225.6981	1026.5749	790.2848	527.7992	347.8769	365.2081	572.1577	866.2916	1140.1547	1370.8171	(97)
Month fracti	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.0000	0.0000	1.0000	1.0000	1.0000	(97a)
Space heating	kWh												
	592.4315	433.9174	330.3673	158.9978	53.7153	0.0000	0.0000	0.0000	0.0000	173.5090	401.2155	612.2659	(98)
Space heating												2756.4198	(98)
Space heating	per m2									(98) / (4) =	35.4980	(99)

8c. Space cooling requirement

Not applicable

Regs Region: England Elmhurst Energy Systems SAP2012 Calculator (Design System) version 4.11r11

FULL SAP CALCULATION PRINTOUT Calculation Type: New Build (As Designed)

CALCULATION OF TARGET EMISSIONS 09 Jan 2014

9a. Energy requirements -												
Fraction of space heat fr Fraction of space heat fr Efficiency of main space Efficiency of secondary/s Space heating requirement	com seconda: com main sy: heating sy: supplementa:	ry/supplemen stem(s) stem 1 (in ^s	ntary system								0.0000 1.0000 93.5000 0.0000 2948.0425	(202) (206) (208)
Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
	433.9174	330.3673		53.7153	0.0000	0.0000	0.0000	0.0000	173.5090	401.2155	612.2659	(98)
Space heating efficiency 93.5000	93.5000	93.5000	93.5000	93.5000	0.0000	0.0000	0.0000	0.0000	93.5000	93.5000	93.5000	(210)
	464.0828	stem) 353.3340	170.0511	57.4495	0.0000	0.0000	0.0000	0.0000	185.5711	429.1075	654.8298	(211)
Water heating requirement 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(215)
Water heating												
Water heating requirement 195.5580		180.9918	162.2184	158.9479	141.9960	136.3435	149.6503	149.3983	168.2125	177.9037	190.8433	(64)
Efficiency of water heate (217)m 87.5855	87.1769	86.3996	84.7605	82.2565	79.8000	79.8000	79.8000	79.8000	84.8965	86.9197	79.8000 87.7055	
		209.4822	191.3845	193.2346	177.9398	170.8566	187.5317	187.2159	198.1383	204.6759	217.5957	
Water heating fuel used Annual totals kWh/year Space heating fuel - main Space heating fuel - seco											2359.0410 2948.0425 0.0000	(211)
Electricity for pumps and central heating pump main heating flue fan Total electricity for the Electricity for lighting Total delivered energy fo	e above, kWl (calculated	h/year d in Append:	ix L)								30.0000 45.0000 75.0000 337.6507 5719.7343	(230e) (231) (232)
12a. Carbon dioxide emiss	sions - Ind:	ividual heat	ting systems	including	micro-CHP							
Space heating - main syst Space heating - secondary Water heating (other fuel Space and water heating Pumps and fans Energy for lighting Total CO2, kg/m2/year Emissions per m2 for spac Fuel factor (electricity) Emissions per m2 for ligh Emissions per m2 for pump Target Carbon Dioxide Emi	tem 1 () te and wate: nting ss and fans	r heating					Energy kWh/year 2948.0425 0.0000 2359.0410 75.0000 337.6507		ion factor kg CO2/kWh 0.2160 0.2160 0.2160 0.5190 0.5190	k	Emissions g CO2/year 636.7772 0.0000 509.5529 1146.3300 175.2407 1360.4958 14.7628 1.5500 2.2568 0.5013 25.6400	(263) (264) (265) (267) (268) (272) (272a) (272b) (272c)

Design SÁP elmhurst energy

Π

Property Reference	Type 15R				Issued on Date	17/12/2019
Assessment	V02		Pro	p Type Ref		
Reference						
Property	Type 15R					
SAP Rating		81 B	DER	24.65	TER	24.67
Environmental		83 B	% DER <ter< th=""><th></th><th>0.07</th><th></th></ter<>		0.07	
CO ₂ Emissions (t/ye	ar)	1.41	DFEE	42.00	TFEE	43.85
General Requireme	nts Compliance	Pass	% DFEE <tfee< th=""><th></th><th>4.22</th><th></th></tfee<>		4.22	
Assessor Details	Mr. Josh Elliott, Josh Elliott, T	el: 07717220	167, JoshElliott@ho	arelea.com	Assessor ID	W974-0001
Client					·	

FULL SAP CALCULATION PRINTOUT Calculation Type: New Build (As Designed)

REGULATIONS COM							
	PLIANCE REPOR	F - Approve	d Doci	ment I	1A, 2013	B Edition, Eng	land
DWELLING AS DES:	IGNED						
Mid-floor flat,	total floor a	area 75 m²					
This report cove It is not a comp		of regulati				ons.	
la TER and DER Fuel for main he Fuel factor:1.55 Target Carbon D Dwelling Carbon	eating:Electr 5 (electricity ioxide Emissio	y) on Rate (TE				אנ	
lb TFEE and DFEM Target Fabric Em Dwelling Fabric	E nergy Efficie Energy Effic:	ncy (TFEE)4	3.8 kW	/m²/y	'r		
2 Fabric U-value	es						
Element External wall Party wall	Average 0.15 (max. 0 0.00 (max. 0	.30) .20)	Highe 0.15 -	(max.	0.70)	OK OK	
Party wall Floor Roof Openings	(no floor) 0.13 (max. 0 1.40 (max. 2	.20)	0.13	(max. (max.	0.35) 3.30)	OK	
2a Thermal bridg Thermal bridging	ging g calculated :	from linear	therr	al tra	insmittar		junction
3 Air permeabil: Air permeability Maximum	ity y at 50 pascai	ls:			n value)		
4 Heating effic: Main heating sys Panel, convector	iency stem:		Room	heater	s - Elec	stric	
Secondary heatin	ng system:		None				
5 Cylinder insu Hot water storad Permitted by DBS Primary pipeworl	lation ge SCG 1.85			C		loss: 1.18 kWh	/day
6 Controls Space heating co	ontrols:		Prog	ammer	and room	n thermostat	
Hot water contro	ols:		Cylin	dersta	ıt		
7. Tau anara 11							
7 Low energy lic Percentage of f Minimum	ixed lights w		rgy f: 75%	ttings	:100%		
7 Low energy lig Percentage of f Minimum 	ixed lights with the second se	t system	75%	ttings	:100%		
7 Low energy liq Percentage of f: Minimum 	ixed lights w ntilation ly and extract wer:	t system	75% 0.53 1.5 90%	ttings	::100%		
7 Low energy lig Percentage of f: Minimum 8 Mechanical ver Continuous supp Specific fan por Maximum MVHR efficiency Minimum:	ixed lights w: ntilation ly and extract wer: :	t system	75% 0.53 1.5 90% 70%	ttings	::100%		
7 Low energy lic Percentage of f: Minimum 8 Mechanical ver Continuous suppi Specific fan pow Maximum WHR efficiency. Minimum: 	xed lights w: ntilation ly and extract wer: : mperature	t system	75% 0.53 1.5 90% 70%		::100%		
7 Low energy lig Percentage of f: Minimum 8 Mechanical ver Continuous supp Specific fan por Maximum MVHR efficiency Minimum: 9 Summertime ter Overheating risl Based on: Overshading:	ixed lights with ntilation ly and extract wer: : mperature k (Thames Val)	t system	75% 0.53 1.5 90% 70% Sligh Avera	t ge		 	
7 Low energy lig Percentage of f: Minimum 8 Mechanical ver Continuous supp Specific fan pow Maximum WHR efficiency: Minimum: 	ixed lights with ntilation wer: 	t system	75% 0.53 1.5 90% 70% Sligh Avera 3.65 7.29	t ge m², No m², No	overhar		
7 Low energy lig Percentage of f: Minimum 8 Mechanical ver Continuous suppi Specific fan por Maximum WVHR efficiency: Minimum: 	ixed lights with tilation ly and extract wer:	t system	75% 0.53 1.5 90% 70% Sligh Avera 3.65 7.29 4.00 Dark	t ge m², Nc ach colour) overhar) overhar red curta	ng ain or roller	
7 Low energy lig Percentage of f: Minimum 8 Mechanical ver Continuous suppi Specific fan pou Maximum MVHR efficiency: Minimum: 	ixed lights with tilation ly and extract wer: :	t system	75% 0.53 1.5 90% 70% Sligh Avera 3.65 7.29 4.00 Dark	t ge m², Nc ach colour) overhar) overhar red curta	ng ain or roller	
7 Low energy lig Percentage of f: Minimum 8 Mechanical ver Continuous suppi Specific fan pov Maximum WVHR efficiency. Minimum: 9 Summertime ter Overheating risl Based on: Overshading: Windows facing ! Air change rate: Blinds/curtains:	<pre>ixed lights w: ntilation wer: mperature k (Thames Val: South:</pre>	t system	75% 0.53 1.5 90% 70% Sligh Avera 3.65 7.29 4.00 Dark- 0.00	t ge m², Nc ach colour) overhar) overhar red curta	ng ain or roller	

Regs Region: England Elmhurst Energy Systems SAP2012 Calculator (Design System) version 4.11r11

, 2013 Edition, England

OK			
OK			
OK			
OK			
OK			
OK			
OK			
ed 100% of daylight	hours		

elmhurst energy

CALCULATION OF DWELLING EMISSIONS FOR REGULATIONS COMPLIANCE 09 Jan 2014

SAP 2012 WORKSHEET FOR New Build (As Designed) (Version 9.92, January 2014) CALCULATION OF DWELLING EMISSIONS FOR REGULATIONS COMPLIANCE 09 Jan 2014 1. Overall dwelling dimensions Storey height Area Volume (m2) (m) (m3) 75.0000 (1b) x 2.7000 (2b) = 202.5000 (1b) - (3b) Ground floor Total floor area TFA = $(1a) + (1b) + (1c) + (1d) + (1e) \dots (1n)$ Dwelling volume $(3a) + (3b) + (3c) + (3d) + (3e) \dots (3n) = 202.5000$ (10) (4) (5) 75.0000 2. Ventilation rate total m3 per hour main secondary other heating heating Number of chimneys Number of open flues Number of intermittent fans Number of passive vents Number of flueless gas fires 0.0000 (6a) 0.0000 (6b) 0.0000 (7a) 0.0000 (7b) 0.0000 (7c) + 0 = Air changes per hour 0.0000 / (5) = 0.0000 (8) Infiltration due to chimneys, flues and fans = (6a) + (6b) + (7a) + (7b) + (7c) =Pressure test Measured/design AP50 Infiltration rate Number of sides sheltered Yes 3.0000 0.1500 (18) 2 (19) Shelter factor $(20) = 1 - [0.075 \times (19)] = (21) = (18) \times (20) =$ 0.8500 (20) Infiltration rate adjusted to include shelter factor 0.1275 (21)
 Jan
 Feb
 Mar
 Apr

 5.1000
 5.0000
 4.9000
 4.4000

 1.2750
 1.2500
 1.2250
 1.1000
 Jul 3.8000 0.9500 Jun 3.8000 0.9500 Aug 3.7000 0.9250 May 4.3000 1.0750 Sep 4.0000 1.0000 Oct 4.3000 1.0750 Nov 4.5000 1.1250 Dec 4.7000 (22) 1.1750 (22a) Wind speed Wind factor Adj infil rate 0.1626 0.1594 0.1562 0.1403 0.1371 0.1211 0.1211 Balanced mechanical ventilation with heat recovery If mechanical ventilation: If balanced with heat recovery: efficiency in % allowing for in-use factor (from Table 4h) = 0.1179 0.1275 0.1371 0.1498 (22b) 0.1434 0.5000 (23a) 76.5000 (23c) Effective ac 0.2801 0.2769 0.2737 0.2578 0.2546 0.2386 0.2386 0.2354 0.2450 0.2546 0.2609 0.2673 (25) 3. Heat losses and heat loss parameter U-value W/m2K 1.3258 0.1500 0.1300 A x U W/K 14.5038 6.5055 9.7500 Element Gross m2 Openings m2 K-value kJ/m2K A x K kJ/K NetArea m2 10.9400 Opening Type 1 (Uw = 1.40) External Wall 1 External Roof 1 (27) (29a) (30) (31) 43.3700 75.0000 129.3100 54.3100 10.9400 75.0000

External Koor 1				/5.0000		/ 5 .	.0000	0.1300	9.750	J			(30)
Total net area o	of external	elements i	Aum(A, m2)			129.	.3100						(31)
Fabric heat loss								30) + (32) =	30.759	3			(33)
To Corridor	,	(11 11 0)				20	.6800	0.0000	0.000				(32)
To Dwelling							.7200	0.0000	0.000	J			(32)
Party Floor 1						75.	.0000						(32d)
Thermal mass par	ameter (TM	1P = Cm / T	FA) in kJ/m	12K								175.0000	(35)
Thermal bridges	(Sum(L x P	si) calcul	ated using	Appendix K)								11.2224	(36)
Total fabric hea				11						(33)	+ (36) =	41.9817	
										()	(00)		(= . /
Ventilation heat					5)m x (5)								
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
(38)m	18.7152	18.5022	18.2892	17.2241	17.0111	15.9461	15.9461	15.7331	16.3721	17.0111	17.4371	17.8632	(38)
Heat transfer co	eff												
	60.6969	60.4839	60.2709	59.2058	58.9928	57.9278	57.9278	57.7148	58.3538	58.9928	59.4188	59.8448	(39)
Average = Sum(39	9)m / 12 =											59.1526	(39)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
HLP	0.8093	0.8065	0.8036	0.7894	0.7866	0.7724	0.7724	0.7695	0.7781	0.7866	0.7923	0.7979	(40)
HLP (average)												0.7887	
Days in month												0./00/	(10)
bays in month													
	31	28	31	30	31	30	31	31	30	31	30	31	(41)

4. Water heati	ing energy i	requirement:	s (kWh/year)									
Assumed occupa Average daily		use (litres	/day)									2.3612 90.2775	
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Daily hot wate	er use												
	99.3053	95.6942	92.0831	88.4720	84.8609	81.2498	81.2498	84.8609	88.4720	92.0831	95.6942	99.3053	(44)
Energy conte	147.2668	128.8005	132.9106	115.8747	111.1845	95.9438	88.9060	102.0210	103.2394	120.3156	131.3339	142.6201	(45)
Energy content	: (annual)									Total = St	um (45) m =	1420.4168	(45)
Distribution 1	Loss (46)m	$= 0.15 \times ($	45)m										
	22.0900	19.3201	19.9366	17.3812	16.6777	14.3916	13.3359	15.3031	15.4859	18.0473	19.7001	21.3930	(46)

Page 3 of 8

Regs Region: England Elmhurst Energy Systems SAP2012 Calculator (Design System) version 4.11r11

FULL SAP CALCULATION PRINTOUT Calculation Type: New Build (As Designed)

		G EMISSI									,	
Water storage loss: Store volume a) If manufacturer decla		actor is kno	own (kWh/d	lay):							145.0000 1.1800) (
Temperature factor from nter (49) or (54) in (55 otal storage loss											0.6000 0.7080	
21.9480 f cylinder contains dedi	19.8240 icated solar	21.9480 storage	21.2400	21.9480	21.2400	21.9480	21.9480	21.2400	21.9480	21.2400	21.9480	(
21.9480 rimary loss 0.0000 otal heat required for w	19.8240 0.0000	21.9480 0.0000	21.2400 0.0000 ed for each	21.9480 0.0000 month	21.2400 0.0000	21.9480 0.0000	21.9480 0.0000	21.2400 0.0000	21.9480 0.0000	21.2400 0.0000	21.9480 0.0000	
	148.6245 0.0000		137.1147 0.0000	133.1325 0.0000	117.1838 0.0000	110.8540 0.0000	123.9690 0.0000 Solar inpu	124.4794 0.0000	142.2636 0.0000 months) = Si	152.5739 0.0000 1m(63)m =	164.5681 0.0000 0.0000) (
169.2148 trom w/h	148.6245	154.8586	137.1147	133.1325	117.1838	110.8540	123.9690	124.4794		152.5739	164.5681	(
eat gains from water hea 66.5246	ating, kWh/m 58.6854	nonth 61.7512	55.5203	54.5273	48.8933	47.1197	51.4804	51.3191	57.5633	60.6605	64.9796	
. Internal gains (see Ta												
tabolic gains (Table 5) Jan	, Watts	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
	118.0579	118.0579	118.0579	118.0579	118.0579	118.0579	118.0579	118.0579	118.0579	118.0579	118.0579) (
19.2562 ppliances gains (calcula	17.1032	13.9092	10.5302	7.8714	6.6454	7.1806	9.3336	12.5275	15.9066	18.5653	19.7914	(
208.6751 ooking gains (calculated	210.8404 d in Appendi	205.3837 ix L, equati	193.7670 ion L15 or	179.1030 L15a), also	165.3209 see Table 5	156.1136 5	153.9482	159.4049	171.0216	185.6856	199.4678	
umps, fans 0.0000	34.8058 0.0000	0.0000	34.8058	34.8058 0.0000	34.8058 0.0000	34.8058 0.0000	34.8058 0.0000	34.8058 0.0000	34.8058 0.0000	34.8058 0.0000	34.8058 0.0000	
	-94.4463			-94.4463	-94.4463	-94.4463	-94.4463	-94.4463	-94.4463	-94.4463	-94.4463	5 (
ater heating gains (Tabl 89.4148 otal internal gains		82.9989	77.1116	73.2893	67.9074	63.3329	69.1940	71.2765	77.3701	84.2507	87.3381	. (
	373.6904	360.7092	339.8261	318.6811	298.2910	285.0444	290.8932	301.6264	322.7157	346.9191	365.0146	(
. Solar gains												
Jan]			m2	Solar flux Table 6a W/m2	Speci: or 2	g fic data Table 6b	Specific or Tabl	FF data le 6c	Acce: facto Table	or	Gains W	
lorth South		3.65	500 900	10.6334 46.7521		0.3500 0.3500	0.	.8000 .8000	0.77		7.5311 66.1332	
olar gains 73.6643 Otal gains 449.4277						205.6778 490.7222			133.9537 456.6693	87.6809 434.6000	63.4234 428.4381	
emperature during heatin	ng periods i	in the livir	ng area fro	om Table 9, 1							21.0000	- (
emperature during heatin tilisation factor for ga Jan au 60.0663	ng periods i ains for liv Feb 60.2778	in the livir ring area, r Mar 60.4908	ng area fro nil,m (see Apr 61.5790	m Table 9, 7 Table 9a) May 61.8013	Th1 (C) Jun 62.9375	Jul 62.9375	Aug 63.1698	Sep 62.4781	Oct 61.8013	Nov 61.3582	Dec 60.9214	1
emperature during heatin tilisation factor for ga Jan au 60.0663 lpha 5.0044 til living area	ng periods i ains for liv Feb 60.2778 5.0185	in the livin ying area, r Mar 60.4908 5.0327	ng area fro hil,m (see Apr 61.5790 5.1053	m Table 9, 7 Table 9a) May 61.8013 5.1201	Th1 (C) Jun 62.9375 5.1958	Jul 62.9375 5.1958	Aug 63.1698 5.2113	62.4781 5.1652	61.8013 5.1201	61.3582 5.0905	Dec 60.9214 5.0614	1
emperature during heatin tilisation factor for ga Jan au 60.0663 lpha 5.0044 til living area 0.9904	ng periods i ains for liv Feb 60.2778 5.0185 0.9830	in the livin ying area, r Mar 60.4908 5.0327 0.9682	ng area fro nil,m (see Apr 61.5790	om Table 9, 7 Table 9a) May 61.8013 5.1201 0.8476	Th1 (C) Jun 62.9375 5.1958 0.6816	Jul 62.9375 5.1958 0.5110	Aug 63.1698 5.2113 0.5403	62.4781 5.1652 0.7615	61.8013 5.1201 0.9325	61.3582 5.0905 0.9816	Dec 60.9214 5.0614 0.9923	1 1 3 (
emperature during heatin tilisation factor for ga Jan au 60.0663 lpha 5.0044 til living area 0.9904 IIT 19.9841 h 2 20.2453	ng periods i ains for liv Feb 60.2778 5.0185	in the livin ying area, r Mar 60.4908 5.0327	ng area fro nil,m (see Apr 61.5790 5.1053 0.9314	m Table 9, 7 Table 9a) May 61.8013 5.1201	Th1 (C) Jun 62.9375 5.1958	Jul 62.9375 5.1958	Aug 63.1698 5.2113	62.4781 5.1652	61.8013 5.1201	61.3582 5.0905	Dec 60.9214 5.0614	1 1 3 (
au 60.0663 lpha 5.0044 til living area 0.9904 HTT 19.9841 th 2 20.2453 til rest of house 0.9884 HTT 2 18.8749	ng periods i nins for liv Feb 60.2778 5.0185 0.9830 20.1313	in the livir ying area, r 60.4908 5.0327 0.9682 20.3425	ng area fro hil,m (see Apr 61.5790 5.1053 0.9314 20.6084	m Table 9, 7 Table 9a) May 61.8013 5.1201 0.8476 20.8276	Th1 (C) Jun 62.9375 5.1958 0.6816 20.9599	Jul 62.9375 5.1958 0.5110 20.9925	Aug 63.1698 5.2113 0.5403 20.9901	62.4781 5.1652 0.7615 20.9264 20.2724 0.7045 20.2052	61.8013 5.1201 0.9325 20.6627 20.2650 0.9140 19.8628	61.3582 5.0905 0.9816 20.2833 20.2601 0.9770 19.3207	Dec 60.9214 5.0614 0.9923 19.9601 20.2551 0.9906 18.8472	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
emperature during heatin tilisation factor for ga Jan au 60.0663 lpha 5.0044 til living area 0.9904 IT 19.9841 h 2 20.2453 til rest of house 0.9884 IT 2 18.8749 iving area fraction IT IT 19.3419	ng periods i hins for liv Feb 60.2778 5.0185 0.9830 20.1313 20.2477 0.9794	in the livir Mar 60.4908 5.0327 0.9682 20.3425 20.2502 0.9612	ng area fro hil,m (see Apr 61.5790 5.1053 0.9314 20.6084 20.2625 0.9156	m Table 9, 1 Table 9a) May 61.8013 5.1201 0.8476 20.8276 20.2650 0.8126	Th1 (C) Jun 62.9375 5.1958 0.6816 20.9599 20.2773 0.6184	Jul 62.9375 5.1958 0.5110 20.9925 20.2773 0.4309	Aug 63.1698 5.2113 0.5403 20.9901 20.2798 0.4607	62.4781 5.1652 0.7615 20.9264 20.2724 0.7045 20.2052	61.8013 5.1201 0.9325 20.6627 20.2650 0.9140	61.3582 5.0905 0.9816 20.2833 20.2601 0.9770 19.3207	Dec 60.9214 5.0614 0.9923 19.9601 20.2551 0.9906 18.8472 0.4211 19.3158	1 3 (1 (5 (2 (1 (3 (
emperature during heatin tilisation factor for ga Jan au 60.0663 lpha 5.0044 til living area UT 19.9841 h 2 20.2453 til rest of house 0.9884 IT 2 18.8749 iving area fraction IT 19.3419 mpperature adjustment	ng periods i juins for liv Feb 60.2778 5.0185 0.9830 20.1313 20.2477 0.9794 19.0898	in the livir Mar 60.4908 5.0327 0.9682 20.3425 20.2502 0.9612 19.3960	ng area fro hil,m (see Apr 61.5790 5.1053 0.9314 20.6084 20.2625 0.9156 19.7814	m Table 9, 1 Table 9a) May 61.8013 5.1201 0.8476 20.8276 20.2650 0.8126 20.0773	<pre>th1 (C) Jun 62.9375 5.1958 0.6816 20.9599 20.2773 0.6184 20.2439</pre>	Jul 62.9375 5.1958 0.5110 20.9925 20.2773 0.4309 20.2731	Aug 63.1698 5.2113 0.5403 20.9901 20.2798 0.4607 20.2739	62.4781 5.1652 0.7615 20.9264 20.2724 0.7045 20.2052 fLA =	61.8013 5.1201 0.9325 20.6627 20.2650 0.9140 19.8628 Living area	61.3582 5.0905 0.9816 20.2833 20.2601 0.9770 19.3207 a / (4) =	Dec 60.9214 5.0614 0.9923 19.9601 20.2551 0.9906 18.8472 0.4211	1 1 2 5 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1
emperature during heatin iilisation factor for ga Jan au 60.0663 lpha 5.0044 til living area 0.9904 IT 19.9841 h 2 20.2453 til rest of house 0.9884 IT 2 18.8749 wing area fraction IT 19.3419 emperature adjustment djusted MIT 19.3419 . Space heating requirem	ng periods i inins for liv Feb 60.2778 5.0185 0.9830 20.1313 20.2477 0.9794 19.0898 19.5283 19.5283	in the livir Mar 60.4908 5.0327 0.9682 20.3425 20.2502 0.9612 19.3960 19.7945 19.7945	ng area fro Apr 61.5790 5.1053 0.9314 20.6084 20.2625 0.9156 19.7814 20.1296 20.1296	m Table 9, 1 Table 9a) May 61.8013 5.1201 0.8476 20.2650 0.8126 20.0773 20.3932 20.3932	Ch1 (C) Jun 62.9375 5.1958 0.6816 20.9599 20.2773 0.6184 20.2439 20.5454 20.5454	Jul 62.9375 5.1958 0.5110 20.9925 20.2773 0.4309 20.2731 20.5761 20.5761	Aug 63.1698 5.2113 0.5403 20.9901 20.2798 0.4607 20.2739 20.5754 20.5754	62.4781 5.1652 0.7615 20.9264 20.2724 0.7045 20.2052 fLA = 20.5089	61.8013 5.1201 0.9325 20.6627 20.2650 0.9140 19.8628 Living area 20.1996	61.3582 5.0905 0.9816 20.2833 20.2601 0.9770 19.3207 a/(4) = 19.7260	Dec 60.9214 5.0614 0.9923 19.9601 20.2551 0.9906 18.8472 0.4211 19.3158 0.0000	1 1 2 5 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1
emperature during heatin tilisation factor for ga Jan au 60.0663 lpha 5.0044 til living area 0.9904 IT 19.9841 h 2 20.2453 til rest of house 0.9884 IT 19.9841 h 2 20.2453 til rest of house 0.9884 IT 19.3419 mperature adjustment djusted MIT 19.3419 . Space heating requirem Jan tilisation 0.9852	reprint for liv Feb 60.2778 5.0185 0.9830 20.1313 20.2477 0.9794 19.0898 19.5283 19.5283 19.5283 Feb 0.9751	Mar 60.4908 5.0327 0.9682 20.3425 20.2502 0.9612 19.3960 19.7945 19.7945 Mar 0.9560	ng area fro Apr 61.5790 5.1053 0.9314 20.6084 20.2625 0.9156 19.7814 20.1296 20.1296	m Table 9, 1 Table 9a) May 61.8013 5.1201 0.8476 20.8276 20.2650 0.8126 20.0773 20.3932 20.3932	Ch1 (C) Jun 62.9375 5.1958 0.6816 20.9599 20.2773 0.6184 20.2439 20.5454 20.5454	Jul 62.9375 5.1958 0.5110 20.9925 20.2773 0.4309 20.2731 20.5761 20.5761 	Aug 63.1698 5.2113 0.5403 20.9901 20.2798 0.4607 20.2739 20.5754 20.5754 20.5754	62.4781 5.1652 0.7615 20.9264 20.2724 0.7045 20.2052 fLA = 20.5089	61,8013 5,1201 0,9325 20,6627 20,2650 0,9140 19,8628 Living area 20,1996 20,1996	61.3582 5.0905 0.9816 20.2833 20.2601 0.9770 19.3207 19.7260 19.7260 19.7260 Nov 0.9729	Dec 60.9214 5.0614 0.9923 19.9601 20.2551 0.9906 18.8472 0.4211 19.3158 0.0000 19.3158	1 (1 (1 (5 (2 (1 (3 () 3 () 3 () 3 ()
emperature during heatin tilisation factor for ga Jan au 60.0663 lpha 5.0044 til living area 0.9904 IT 19.9841 h 2 20.2453 til rest of house 0.9884 IT 2 18.8749 iving area fraction IT 19.3419 emperature adjustment djusted MIT 19.3419 . Space heating requirem Jan tilisation 0.9852 seful gains 442.7581 xt temp. 4.3000 eat loss rate W	reprint for liv Feb 60.2778 5.0185 0.9830 20.1313 20.2477 0.9794 19.0898 19.5283 19.5283 19.5283 19.5283 reprint for the format for the forma	Mar 60.4908 5.0327 0.9682 20.3425 20.2502 0.9612 19.3960 19.7945 19.7945 19.7945 Mar 0.9560 500.1336 6.5000	ng area fro Apr (1,5790) 5.1053 0.9314 20.6084 20.2625 0.9156 19.7814 20.1296 20.1296 20.1296 Apr 0.9123 488.1231 8.9000	m Table 9, 1 Table 9a) May 61.8013 5.1201 0.8476 20.8276 20.2650 0.8126 20.0773 20.3932 20.3932 20.3932 	Th1 (C) Jun 62.9375 5.1958 0.6816 20.9599 20.2773 0.6184 20.2439 20.5454 20.5454 20.5454 Jun 0.6427 328.6117 14.6000	Jul 62.9375 5.1958 0.5110 20.9925 20.2773 0.4309 20.2731 20.5761 20.5761 20.5761 	Aug 63.1698 5.2113 0.5403 20.9901 20.2798 0.4607 20.2739 20.5754 20.5754 20.5754 20.5754	62.4781 5.1652 0.7615 20.9264 20.2724 0.7045 20.2052 fLA = 20.5089 20.5089 20.5089 20.5089	61.8013 5.1201 0.9325 20.6627 20.2650 0.9140 19.8628 Living area 20.1996 20.1996 20.1996	61.3582 5.0905 0.9816 20.2833 20.2601 0.9770 19.3207 19.7260 19.7260 19.7260 19.7260	Dec 60.9214 5.0614 0.9923 19.9601 20.2551 0.9906 18.8472 0.4211 19.3158 0.0000 19.3158 Dec 0.9879 423.2488 4.2000	1 1 3 3 4 4 5 6 7 1 1 1 1 1 1 1 1 1 1 1 1 1
emperature during heatin tilisation factor for ga Jan au 60.0663 lpha 5.0044 til living area 0.9904 IT 19.9841 h 2 20.2453 til rest of house 0.9884 IT 2 18.8749 iving area fraction IT 19.3419 emperature adjustment djusted MIT 19.3419 . Space heating requirem Jan tilisation 0.9852 seful gains 442.7581	reprint for liv Feb 60.2778 5.0185 0.9830 20.1313 20.2477 0.9794 19.0898 19.5283 19.5283 19.5283 19.5283	Mar 60.4908 5.0327 0.9682 20.3425 20.2502 0.9612 19.3960 19.7945 19.7945 19.7945 Mar 0.9560 500.1336	ng area fro Apr (1,5790) 5.1053 0.9314 20.6084 20.2625 0.9156 19.7814 20.1296 20.1296 20.1296	m Table 9, 1 Table 9a) May 61.8013 5.1201 0.8476 20.2650 0.8126 20.0773 20.3932 20.3932 20.3932 May 0.8192 437.5032	Th1 (C) Jun 62.9375 5.1958 0.6816 20.9599 20.2773 0.6184 20.5454 20.5454 20.5454 Jun 0.6427 328.6117	Jul 62.9375 5.1958 0.5110 20.9925 20.2773 0.4309 20.2731 20.5761 20.5761 	Aug 63.1698 5.2113 0.5403 20.9901 20.2739 20.5754 20.5754 20.5754 20.5754	62.4781 5.1652 0.7615 20.9264 20.2724 0.7045 20.2052 fLA = 20.5089 20.5089 20.5089	61.8013 5.1201 0.9325 20.6627 20.2650 0.9140 19.8628 Living area 20.1996 20.1996 20.1996	61.3582 5.0905 0.9816 20.2833 20.2601 0.9770 19.3207 19.3207 19.7260 19.7260 19.7260	Dec 60.9214 5.0614 0.9923 19.9601 20.2551 0.9906 18.8472 0.4211 19.3158 0.0000 19.3158 Dec 0.9879 423.2488	1 1 1 1 1 1 1 1 1 1 1 1 1 1

CALCULATION OF DWELLING EMISSIONS FOR REGULATIONS COMPLIANCE

elmhurst energy

CALCULATION OF DWELLING EMISSIONS FOR REGULATIONS COMPLIANCE 09 Jan 2014

8c. Space cooling requirement

Not applicable

9a. Energy requirements - Indivi											
Fraction of space heat from seco Fraction of space heat from main Efficiency of main space heating Efficiency of secondary/suppleme Space heating requirement	system(s) system 1 (in	%)	m (Table 11)						0.0000 1.0000 100.0000 0.0000 1731.7918	(202) (206) (208)
Jan Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Space heating requirement 349.8588 269.30			56.0483	0.0000	0.0000	0.0000	0.0000	111.4301	235.7269	358.1261	(98)
Space heating efficiency (main h 100.0000 100.00	0 100.0000	1) 100.0000	100.0000	0.0000	0.0000	0.0000	0.0000	100.0000	100.0000	100.0000	(210)
Space heating fuel (main heating 349.8588 269.30		127.2502	56.0483	0.0000	0.0000	0.0000	0.0000	111.4301	235.7269	358.1261	(211)
Water heating requirement 0.0000 0.00	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(215)
Water heating											
	15 154.8586	137.1147	133.1325	117.1838	110.8540	123.9690	124.4794	142.2636	152.5739	164.5681	
Efficiency of water heater (217)m 100.0000 100.00		100.0000	100.0000	100.0000	100.0000	100.0000	100.0000	100.0000	100.0000	100.0000 100.0000	
Fuel for water heating, kWh/mont 169.2148 148.62 Water heating fuel used		137.1147	133.1325	117.1838	110.8540	123.9690	124.4794	142.2636	152.5739	164.5681 1678.8368	
Annual totals kWh/year Space heating fuel - main system Space heating fuel - secondary										1731.7918 0.0000	
Electricity for pumps and fans: (BalancedWithHeatRecovery, D mechanical ventilation fans (Total electricity for the above, Electricity for lighting (calcul Energy saving/generation technol PV Unit 0 (0.80 * 0.51 * 1080 * Total delivered energy for all u	SFP = 0. kWh/year ated in Append ogies (Append: 0.80) =	.6625) lix L)		= 0.6625)				-352.3568		163.6706 163.6706 340.0702 -352.3568 3562.0125	(231) (232) (233)
12a. Carbon dioxide emissions -	Individual hea	ating system	s including	micro-CHP							
Space heating - main system 1 Space heating - secondary Water heating (other fuel) Space and water heating Pumps and fans Energy for lighting						Energy kWh/year 1731.7918 0.0000 1678.8368 163.6706 340.0702		ion factor kg CO2/kWh 0.5190 0.0000 0.5190 0.5190 0.5190		Emissions cg CO2/year 898.7999 0.0000 871.3163 1770.1162 84.9451 176.4964	(261) (263) (264) (265) (267)
Energy saving/generation techno PV Unit Total CO2, kg/year Dwelling Carbon Dioxide Emission						-352.3568		0.5190		-182.8732 1848.6845 24.6500	(272)
16 CO2 EMISSIONS ASSOCIATED WITH DER Total Floor Area Assumed number of occupants CO2 emission factor in Table 12 CO2 emissions from cooking, equa Total CO2 emissions offset fr Additional allowable electricity Resulting CO2 emissions offset f Net CO2 emissions	For electricit quation (L14) tion (L16) m biofuel CH1 generation, 1	y displaced wh/m²/year	from grid		fy generati	ON TECHNOLO	GIES		TFA N EF	24.6500 75.0000 2.3612 0.5190 16.4875 2.3422 43.4798 0.0000 0.0000 43.4798	ZC2 ZC3 ZC4 ZC5 ZC6 ZC7

Regs Region: England Elmhurst Energy Systems SAP2012 Calculator (Design System) version 4.11r11

FULL SAP CALCULATION PRINTOUT Calculation Type: New Build (As Designed)

CALCULATION OF TARGET EMISSIONS 09 Jan 2014

	FARGET EMIS	SSIONS	09 Jan 201	. 4	9.92, Januar								
									<u> </u>			*** 1	
Ground floor Total floor area Dwelling volume	a TFA = (1a	a)+(1b)+(1c	:)+(1d)+(1e)	(ln)	7	5.0000		(m2) 75.0000	(1b) x	(m) 2.7000	(2b) =	Volume (m3) 202.5000 202.5000	(1b) (4)
2. Ventilation r	$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
	or area TFA = $(1a)+(1b)+(1c)+(1d)+(1e)(1n)$ 75.0000 To area TFA = $(1a)+(1b)+(1c)+(1d)+(1e)(1n)$ 75.0000 The area TFA = $(1a)+(1b)+(1c)+(1d)+(1e)(3n) = 202.$ The area TFA = $(1a)+(1b)+(1c)+(1d)+(3e)(3n) = 202.$ The area TFA = $(1a)+(1b)+(1c)+(1e)+(1e)-(1e)$ The area TFA = $(1a)+(1b)+(1e)+(1e)+(1e)-(1e)$ The area TFA = $(1a)+(1b)+(1e)+(1e)-(1e)$ The area TFA = $(1a)+(1b)+(1e)+(1e)+(1e)-(1e)-(1e)-(1e)-(1e)-(1e)-(1e)-(1e)-$			3 per hour									
Number of passiv	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			0.0000 0.0000 30.0000 0.0000 0.0000	(6b) (7a) (7b)								
Pressure test Measured/design Infiltration rat	AP50 te		and fans	= (6a)+(6b)	+(7a)+(7b)+((7c) =				30.0000		s per hour 0.1481 Yes 5.0000 0.3981 2	(8)
Shelter factor Infiltration rat	te adjusted	d to includ	le shelter f	actor								0.8500 0.3384	
Wind speed Wind factor	5.1000	5.0000	4.9000	4.4000	4.3000	3.8000	3.8000	3.7000	4.0000	4.3000	4.5000	Dec 4.7000 1.1750	
Adj infilt rate Effective ac												0.3977 0.5791	
3. Heat losses a	and heat lo	oss paramet	er										
3. Heat losses a Element TER Opening Type External Wall 1 External Roof 1	of intermittent fans 3 * 10 = of passive vents 0 * 40 = of flueless gas fires 0 * 40 = ation due to chimneys, flues and fans = (6a)+(6b)+(7a)+(7b)+(7c) = ation rate iddesign AP50 ation rate of sides sheltered (20) = 1 - [0.075 x (19)] = : factor (21) = (18) x (20) =			A x K kJ/K	(27) (29a) (30)								
3. Heat losses a Element TER Opening Type External Wall 1 External Roof 1 Total net area c Fabric heat loss	e (Uw = 1.4 of external s, W/K = St	40) l elements . um (A x U)	er Aum(A, m2)	Gross m2 54.3100 75.0000	Openings m2	Net 10 43 75 129	m2 .9400 .3700 .0000 .3100	U-value W/m2K 1.3258 0.1800 0.1300	W/ 14.503 7.806 9.750	K 8 6 0		kJ/K	(27) (29a) (30) (31) (33)
3. Heat losses a Element TER Opening Type External Wall 1 External Roof 1 Total net area c Fabric heat loss Thermal mass par Thermal bridges	e (Uw = 1.4 of externa s, W/K = Su cameter (TT (Sum(L x 1	40) l elements . um (A x U) MP = Cm / T	er Aum(A, m2) FA) in kJ/m	Gross m2 54.3100 75.0000	Openings m2 10.9400	Net 10 43 75 129	m2 .9400 .3700 .0000 .3100	U-value W/m2K 1.3258 0.1800 0.1300	W/ 14.503 7.806 9.750	K 8 6 0			(27) (29a) (30) (31) (33) (35) (36)
3. Heat losses a TER Opening Type External Wall 1 External Roof 1 Total net area of Fabric heat loss Thermal mass par Thermal bridges Total fabric heat Ventilation heat (38)m	e (Uw = 1.4 of externa: , W/K = S; (Sum(L x 1 at loss closs calc Jan 39.6334	40) l elements um (A x U) MP = Cm / T Psi) calcul culated mon	er Aum(A, m2) 'FA) in kJ/m ated using	Gross m2 54.3100 75.0000 h2K Appendix K) = 0.33 x (2 Apr	Openings m2 10.9400	Net 10 43 75 129	m2 .9400 .3700 .0000 .3100	U-value W/m2K 1.3258 0.1800 0.1300	₩/ 14.503 7.806 9.750 = 32.060 Sep	K 8 6 0	kJ/m2K	kJ/K 250.0000 6.6612	(27) (29a) (30) (31) (33) (35) (36) (37)
3. Heat losses a Element TER Opening Type External Wall 1 External Roof 1 Total net area c Fabric heat loss Thermal mass par Thermal bridges Total fabric heat Ventilation heat (38)m Heat transfer co	e (Uw = 1 of externai s, W/K = Su cameter (TT (Sum(L x) at loss calo Jan 39.6334 oeff 78.3550	40) l elements um (A x U) MP = Cm / T Psi) calcul culated mon Feb 39.3919 78.1135	er Aum(A, m2) FA) in kJ/m ated using thly (38)m Mar	Gross m2 54.3100 75.0000 h2K Appendix K) = 0.33 x (2 Apr	Openings m2 10.9400 25)m x (5) May	Net 10 43 75 129 Jun	LArea m2 .9400 .3700 .0000 .3100 (26)(3	U-value W/m2K 1.3258 0.1800 0.1300 30) + (32) Aug	₩/ 14.503 7.806 9.750 = 32.060 Sep	K 8 6 0 4 (33) Oct	kJ/m2K + (36) = Nov	kJ/K 250.0000 6.6612 38.7216 Dec	(27) (29a) (30) (31) (33) (35) (36) (37) (38) (38)
3. Heat losses a TER Opening Type External Wall 1 External Roof 1 Total net area c Fabric heat loss Thermal mass par Thermal mass par Thermal bridges Total fabric heat Ventilation heat (38)m Heat transfer co Average = Sum(35 HLP HLP (average)	e (Uw = 1 of externai s, W/K = Su cameter (TT (Sum(L x) at loss calo Jan 39.6334 oeff 78.3550	40) l elements um (A x U) MP = Cm / T Psi) calcul culated mon Feb 39.3919 78.1135	er Aum(A, m2) 'FA) in kJ/m ated using thly (38)m Mar 39.1551	Gross m2 54.3100 75.0000 A2K Appendix K) = 0.33 x (2 Apr 38.0429	Openings m2 10.9400 25)m x (5) May 37.8349	Net 10 43 75 129 Jun 36.8662	LArea m2 9400 .3700 .0000 .3100 (26)(3 Jul 36.8662	U-value W/m2K 1.3258 0.1800 0.1300 30) + (32) Aug 36.6868	W) 14.503 7.806 9.750 = 32.060 Sep 37.2393	K 8 6 0 4 (33) Oct 37.8349	kJ/m2K + (36) = Nov 38.2558	kJ/K 250.0000 6.6612 38.7216 Dec 38.6959 77.4175	(27) (29a) (30) (31) (33) (35) (36) (37) (38) (39) (39) (39)
3. Heat losses a TER Opening Type External Wall 1 External Roof 1 Total net area c Fabric heat loss Thermal mass par Thermal bridges Total fabric heat Ventilation heat	e (Uw = 1 of externai s, W/K = Su cameter (TT (Sum(L x 1 t loss c loss cald Jan 39.6334 oeff 78.3550 3)m / 12 = Jan	40) l elements um (A x U) MP = Cm / T Psi) calcul culated mon Feb 39.3919 78.1135 Feb	er Aum(A, m2) FA) in kJ/m ated using thly (38)m Mar 39.1551 77.8767 Mar	Gross m2 54.3100 75.0000 A2K Appendix K) = 0.33 x (2 Apr 38.0429 76.7645 Apr	Openings m2 10.9400 25)m x (5) May 37.8349 76.5564 May	Net 10 43 75 129 Jun 36.8662 75.5878 Jun	LArea m2 .9400 .3700 .0000 .3100 (26)(3 Jul 36.8662 75.5878 Jul	U-value W/m2K 1.3258 0.1800 0.1300 30) + (32) Aug 36.6868 75.4084 Aug	() 14.503 7.806 9.750 = 32.060 Sep 37.2393 75.9609 Sep	K 8 6 0 4 (33) 0ct 37.8349 76.5564 0ct	kJ/m2K + (36) = Nov 38.2558 76.9774 Nov	kJ/K 250.0000 6.6612 38.7216 Dec 38.6959 77.4175 76.7635 Dec 1.0322 1.0225	(27) (29a) (30) (31) (33) (35) (36) (37) (38) (39) (39) (39)
3. Heat losses a TER Opening Type External Wall 1 External Roof 1 TER Opening Type External Mall 1 External marks par Thermal marks par Thermal marks par thermal marks par thermal marks par thermal marks part (38)m Heat transfer cc Average = Sum(35 HLP HLP (average) Days in month 4. Water heating	and heat 1 (Uw = 1.4 of external b, W/K = Sy cameter (TI (Sum(L x 1) at loss c loss cald Jan 39.6334 beff 78.3550 a)m / 12 = Jan 1.0447 31 g energy references	40) l elements um (A x U) MP = Cm / T Psi) calcul culated mon Feb 39.3919 78.1135 Feb 1.0415 28 equirements	er Aum(A, m2) FA) in kJ/m ated using thly (38)m Mar 39.1551 77.8767 Mar 1.0384 31	Gross m2 54.3100 75.0000 22K Appendix K) = 0.33 x (2 Apr 38.0429 76.7645 Apr 1.0235 30	Openings m2 10.9400 25)m x (5) May 37.8349 76.5564 May 1.0208 31	Ner 10 43 75 129 36.8662 75.5878 Jun 1.0078 30	LArea m2 9400 .3700 (26)(3 Jul 36.8662 75.5878 Jul 1.0078 31	U-value W/m2K 1.3258 0.1800 0.1300 30) + (32) Aug 36.6868 75.4084 Aug 1.0054 31	<pre>w, 14,503 7,806 9,750 = 32.060 sep 37.2393 75.9609 Sep 1.0128</pre>	K 8 6 0 4 (33) 0ct 37.8349 76.5564 0ct 1.0208	<pre>kJ/m2K + (36) = Nov 38.2558 76.9774 Nov 1.0264</pre>	kJ/K 250.0000 6.6612 38.7216 Dec 38.6959 77.4175 76.7635 Dec 1.0322 1.0225	(27) (29a) (30) (31) (33) (35) (36) (37) (38) (39) (39) (40) (40)
3. Heat losses a Element TER Opening Type External Wall 1 External Roof 1 Total net area c Fabric heat loss Thermal mass par Thermal mass par Thermal bridges Total fabric heat (38)m Heat transfer cc Average = Sum(39 HLP HLP (average) Days in month	e (Uw = 1 of external s, W/K = Su cameter (TT (Sum(L x 1) at loss cald Jan 39.6334 oeff 78.3550 a)m / 12 = Jan 1.0447 31 g energy re	40) l elements . um (A x U) MP = Cm / T Psi) calcul culated mon Feb 39.3919 78.1135 Feb 1.0415 28 equirements	er Aum(A, m2) FA) in kJ/m ated using thly (38)m Mar 39.1551 77.8767 Mar 1.0384 31	Gross m2 54.3100 75.0000 22K Appendix K) = 0.33 x (2 Apr 38.0429 76.7645 Apr 1.0235 30	Openings m2 10.9400 25)m x (5) May 37.8349 76.5564 May 1.0208 31	Ner 10 43 75 129 36.8662 75.5878 Jun 1.0078 30	LArea m2 9400 .3700 (26)(3 Jul 36.8662 75.5878 Jul 1.0078 31	U-value W/m2K 1.3258 0.1800 0.1300 30) + (32) Aug 36.6868 75.4084 Aug 1.0054 31	<pre>w, 14,503 7,806 9,750 = 32.060 sep 37.2393 75.9609 Sep 1.0128</pre>	K 8 6 0 4 (33) 0ct 37.8349 76.5564 0ct 1.0208	<pre>kJ/m2K + (36) = Nov 38.2558 76.9774 Nov 1.0264</pre>	kJ/K 250.0000 6.6612 38.7216 Dec 38.6959 77.4175 76.7635 Dec 1.0322 1.0225	(27) (29a) (30) (31) (33) (35) (36) (37) (38) (39) (39) (40) (40) (41) (41)
3. Heat losses a S. Heat losses a TER Opening Type External Wall 1 External Roof 1 Total net area c Fabric heat loss Thermal mass par Thermal bridges Total fabric heat (38)m Heat transfer cc Average = Sum(35 HLP HLP (average) Days in month 4. Water heating Assumed occupanc Average daily ho	and heat 1 (Uw = 1.4 of external y, W/K = Sy cameter (TI (Sum(L x 1) tat loss c loss cald Jan 39.6334 beff 78.3550 a)m / 12 = Jan 1.0447 31 g energy re- cy t water us Jan	40) l elements . um (A x U) MP = Cm / T Psi) calcul culated mon Feb 39.3919 78.1135 Feb 1.0415 28 equirements	er Aum(A, m2) FA) in kJ/m ated using thly (38)m Mar 39.1551 77.8767 Mar 1.0384 31	Gross m2 54.3100 75.0000 22K Appendix K) = 0.33 x (2 Apr 38.0429 76.7645 Apr 1.0235 30	Openings m2 10.9400 25)m x (5) May 37.8349 76.5564 May 1.0208 31	Ner 10 43 75 129 36.8662 75.5878 Jun 1.0078 30	LArea m2 9400 .3700 (26)(3 Jul 36.8662 75.5878 Jul 1.0078 31	U-value W/m2K 1.3258 0.1800 0.1300 30) + (32) Aug 36.6868 75.4084 Aug 1.0054 31	<pre>w, 14,503 7,806 9,750 = 32.060 sep 37.2393 75.9609 Sep 1.0128</pre>	K 8 6 0 4 (33) 0ct 37.8349 76.5564 0ct 1.0208	<pre>kJ/m2K + (36) = Nov 38.2558 76.9774 Nov 1.0264</pre>	kJ/K 250.0000 6.6612 38.7216 Dec 38.6959 77.4175 76.7635 Dec 1.0322 1.0235 31 2.3612	(27) (29a) (30) (31) (33) (35) (36) (37) (38) (39) (39) (40) (40) (41) (41)
3. Heat losses a Element TER Opening Type External Wall 1 External Roof 1 Total net area c Fabric heat loss Thermal mass par Thermal mass par Thermal mass par Thermal bridges Total fabric heat (38)m Heat transfer cc Average = Sum(39 HLP HLP (average) Days in month 4. Water heating Assumed occupanc Average daily hot Daily hot water Energy conte 1 Energy conte 1	and heat 1 e (Uw = 1.4 of external s, W/K = So cameter (TH (Sum(L x 1) a) .6334 oeff 78.3550 e) m / 12 = Jan 1.0447 31 g energy re- cy ot water us 99.3053 147.2668 (annual)	<pre>0000 paramet 0000 1 elements 0000 000 000 000 000 000 000 000 000</pre>	er Aum(A, m2) 'FA) in kJ/m ated using thly (38)m Mar 39.1551 77.8767 Mar 1.0384 31 : (kWh/year) day) Mar 92.0831 132.9106	Gross m2 54.3100 75.0000 m2K Appendix K) = 0.33 x (2 Apr 38.0429 76.7645 Apr 1.0235 30	Openings m2 10.9400 25)m x (5) May 37.8349 76.5564 May 1.0208 31	Net 10 43 75 129 Jun 36.8662 75.5878 Jun 1.0078 30	LArea m2 9400 3700 (26)(3 (26)(3 Jul 36.8662 75.5878 Jul 1.0078 31	U-value W/m2K 1.3258 0.1800 0.1300 30) + (32) Aug 36.6868 75.4084 Aug 1.0054 31	<pre>w, 14.503 7.806 9.750 = 32.060 sep 1.0128 30</pre>	K (33) 4 (33) 76.5564 0ct 1.0208 31 0ct 92.0831 120.3156	<pre>kJ/m2K + (36) = Nov 38.2558 76.9774 Nov 1.0264 30</pre>	kJ/K 250.0000 6.6612 38.7216 Dec 38.6959 77.4175 76.7635 Dec 1.0322 1.0235 31 2.3612 90.2775 Dec 99.3053 142.6201	(27) (29a) (30) (31) (33) (35) (36) (37) (39) (40) (40) (40) (41) (41) (42) (43)
3. Heat losses a S. Heat losses a TER Opening Type External Wall 1 External Roof 1 TER Opening Type External wall 1 External marge Fabric heat loss Thermal bridges Total fabric heat (38)m Heat transfer cc Average = Sum(35 HLP HLP (average) Days in month Average daily hor Average daily hor Daily hot water Energy content 1 Energy content 1 Energy content 1 Energy content 1 Energy content 1 Energy content 1 Energy content 1	and heat 1 (Uw = 1 (Uw = 1 (of external (Sum(L x 1) (Sum(L x 1) at loss closs calc Jan 39.6334 oeff 78.3550 (m / 12 = Jan 1.0447 31 g energy re- cy pt water us Jan use 99.3053 (46)m = 22.0900	40) 1 elements um (A × U) MP = Cm / T Psi) calcul culated mon Feb 39.3919 78.1135 Feb 1.0415 28 equirements se (litres/ Feb 95.6942 128.8005 = 0.15 × (4	er Aum(A, m2) 'FA) in kJ/m ated using thly (38)m Mar 39.1551 77.8767 Mar 1.0384 31 : (kWh/year) day) Mar 92.0831 132.9106	Gross m2 54.3100 75.0000 12K Appendix K) = 0.33 x (2 Apr 38.0429 76.7645 Apr 1.0235 30 Apr 80.4720	Openings m2 10.9400 25)m x (5) May 37.8349 76.5564 May 1.0208 31 31 May 84.8609	Net 10 43 75 129 Jun 36.8662 75.5878 Jun 1.0078 30 Jun 81.2498	LArea m2 .9400 .3700 .0000 (26)(3 Jul 36.8662 75.5878 Jul 1.0078 31 Jul 81.2498	U-value W/m2K 1.3258 0.1800 0.1300 30) + (32) Aug 36.6868 75.4084 Aug 1.0054 31 	<pre>www 14.503 7.806 9.750 = 32.060 sep 37.2393 75.9609 Sep 1.0128 30 Sep 88.4720</pre>	K (33) 4 (33) 76.5564 0ct 1.0208 31 0ct 92.0831 120.3156	<pre>kJ/m2K + (36) = Nov 38.2558 76.9774 Nov 1.0264 30 Nov 95.6942 131.3339</pre>	kJ/K 250.0000 6.6612 38.7216 Dec 38.6959 77.4175 76.7635 Dec 1.0322 1.0235 31 2.3612 90.2775 Dec 99.3053 142.6201	(27) (29a) (30) (31) (33) (36) (37) (39) (40) (40) (40) (41) (41) (41) (42) (43)
3. Heat losses a S. Heat losses a TER Opening Type External Wall 1 External Roof 1 TER Opening Type External mass par Thermal mass par Thermal mass par Thermal bridges Total net area c Fabric heat loss Thermal mass par Heat transfer cc Average = Sum(35 HLP HLP (average) Days in month Assumed occupanc Average daily hot Daily hot water Energy content (Distribution loss	and heat 16 (Uw = 1.4 of external b, W/K = Sy crameter (TH (Sum(L x 1) t loss cald Jan 39.6334 oeff 78.3550 39.m / 12 = Jan 1.0447 31 g energy ry cy t water us Jan 99.3053 147.2668 (annual) ss (46)m = 22.0900 pss: urer decla:	<pre>40) 1 elements 40) 1 elements 40) MP = Cm / T Psi) calcul culated mon Feb 39.3919 78.1135 Feb 1.0415 28 equirements equirements equirements equirements equirements 1.0415 28 equirements equirem</pre>	er Aum(A, m2) (FA) in kJ/m ated using thly (38)m Mar 39.1551 77.8767 Mar 1.0384 31 (kWh/year) day) Mar 92.0831 132.9106 5)m 19.9366	Gross m2 54.3100 75.0000 2K Appendix K) = 0.33 x (2 Apr 38.0429 76.7645 Apr 1.0235 30 30 Apr 88.4720 115.8747 17.3812	Openings m2 10.9400 25)m x (5) May 37.8349 76.5564 May 1.0208 31 31 May 84.8609 111.1845 16.6777	Ner 10 43 75 129 Jun 36.8662 75.5878 Jun 1.0078 30 Jun 81.2498 95.9438	LArea m2 9400 .3700 (26)(3 Jul 36.8662 75.5878 Jul 1.0078 31 Jul 81.2498 88.9060	U-value W/m2K 1.3258 0.1800 0.1300 30) + (32) Aug 36.6868 75.4084 Aug 1.0054 31 31 Aug 84.8609 102.0210	<pre>w, 14.503 7.806 9.750 = 32.060 Sep 37.2393 75.9609 Sep 1.0128 30 Sep 88.4720 103.2394</pre>	K (33) 4 (33) Oct 37.8349 76.5564 Oct 1.0208 31 Oct 92.0831 120.3156 Total = 5	<pre>kJ/m2K + (36) = Nov 38.2558 76.9774 Nov 1.0264 30 Nov 95.6942 131.3339 Sum(45) m =</pre>	kJ/K 250.0000 6.6612 38.7216 Dec 38.6959 77.4175 76.765 Dec 1.0322 1.0235 31 2.3612 90.2775 Dec 99.3053 142.6201 1420.4168	(27) (29a) (30) (31) (33) (35) (36) (37) (39) (40) (40) (40) (40) (41) (41) (41) (42) (45) (45) (45) (46) (49)

Design SAP

Π

elmhurst energy

CALCULATION OF TARGET EMISSIONS 09 Jan 2014

If cylinder co	ontains ded:	icated sola:	r storage										
	22.8747	20.6610	22.8747	22.1368	22.8747	22.1368	22.8747	22.8747	22.1368	22.8747	22.1368	22.8747	(57)
Primary loss	23.2624	21.0112	23.2624	22.5120	23.2624	22.5120	23.2624	23.2624	22.5120	23.2624	22.5120	23.2624	(59)
Total heat rec	quired for w	water heatin	ng calculate	ed for each	month								
	193.4039	170.4727	179.0477	160.5235	157.3216	140.5926	135.0431	148.1580	147.8882	166.4527	175.9826	188.7571	(62)
Solar input	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(63)
								Solar inpu	ut (sum of m	nonths) = Su	1m (63) m =	0.0000	(63)
Output from w/	/h												
	193.4039	170.4727	179.0477	160.5235	157.3216	140.5926	135.0431	148.1580	147.8882	166.4527	175.9826	188.7571	(64)
								Total pe	er year (kWl	n/year) = Su	.um (64) m =	1963.6436	(64)
Heat gains fro	om water hea	ating, kWh/m	nonth										
	85.8759	76.1639	81.1024	74.2474	73.8785	67.6203	66.4709	70.8316	70.0461	76.9146	79.3875	84.3308	(65)

5. Internal gains (see Table 5 and 5a) Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec (66)m 118.0579 118.0579 118.0579 118.0579 118.0579 118.0579 118.0579 118.0579 118.0579 118.0579 118.0579 118.0579 118.0579 (66) Lighting gains (calculated in Appendix L, equation L9 or L9a), also see Table 5 10 7023 17 5705 14 2803 10.8179 8.0865 6.8270 7.3768 9.5886 12.8698 16.3412 19.0726 20.3321 (67)

	19.7823	17.5705	14.2893	10.8179	8.0865	6.8270	7.3768	9.5886	12.8698	16.3412	19.0726	20.3321 (67)
Appliances gai	ns (calcula	ted in Appe	ndix L, equ	ation L13 d	or L13a), al	lso see Tabl	Le 5						
	208.6751	210.8404	205.3837	193.7670	179.1030	165.3209	156.1136	153.9482	159.4049	171.0216	185.6856	199.4678 (68)
Cooking gains	(calculated	in Appendi	x L, equati	on L15 or 1	L15a), also	see Table 5	5						
	34.8058	34.8058	34.8058	34.8058	34.8058	34.8058	34.8058	34.8058	34.8058	34.8058	34.8058	34.8058 (69)
Pumps, fans	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000 (70)
Losses e.g. ev	aporation (negative va	lues) (Tabl	.e 5)									
	-94.4463	-94.4463	-94.4463	-94.4463	-94.4463	-94.4463	-94.4463	-94.4463	-94.4463	-94.4463	-94.4463	-94.4463 (71	.)
Water heating	gains (Tabl	e 5)											
	115.4246	113.3392	109.0086	103.1213	99.2991	93.9171	89.3426	95.2038	97.2863	103.3798	110.2605	113.3479 (72)
Total internal	gains												
	405.2993	403.1675	390.0990	369.1236	347.9059	327.4823	314.2504	320.1580	330.9784	352.1600	376.4361	394.5651 (73)

6. Solar gair	15												
[Jan]			A	m2	Solar flux Table 6a W/m2	Speci	g fic data Table 6b	Specific or Tab		Acce fact Table	or	Gains W	
North South			3.6 7.2		10.6334 46.7521		0.6300 0.6300		.7000 .7000	0.77 0.77		11.8614 104.1598	
Solar gains Total gains	116.0212 521.3205	193.2547 596.4222	255.8156 645.9146	307.4632 676.5868	339.2679 687.1738	335.5142 662.9965	323.9426 638.1929	299.7850 619.9430	273.3041 604.2825	210.9770 563.1370	138.0975 514.5335	99.8919 494.4571	

lemperature d	uring heatin	a periode i	n the livin	a area from	Table 9 T	'b1 (C)						21.0000	(85
Jtilisation f												21.0000	(00)
ciribación i	Jan	Feb	Mar Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
au	66.4709	66.6765	66.8792	67.8482	68.0326	68.9044	68.9044	69.0683	68.5660	68.0326	67.6606	67.2759	
lpha	5.4314	5.4451	5.4586	5.5232	5.5355	5.5936	5.5936	5.6046	5.5711	5.5355	5.5107	5.4851	
til living a	rea												
	0.9959	0.9909	0.9791	0.9460	0.8616	0.6910	0.5145	0.5498	0.7816	0.9520	0.9907	0.9969	(86
IT	19.9923	20.1484	20.3650	20.6298	20.8462	20.9670	20.9946	20.9922	20.9335	20.6664	20.2823	19.9664	(87
h 2	20.0462	20.0489	20.0515	20.0638	20.0661	20.0768	20.0768	20.0788	20.0727	20.0661	20.0614	20.0566	(88)
til rest of i	house												
	0.9946	0.9880	0.9722	0.9274	0.8157	0.6068	0.4101	0.4447	0.7061	0.9317	0.9872	0.9959	(89
IT 2	18.7087	18.9373	19.2514	19.6329	19.9159	20.0548	20.0748	20.0756	20.0219	19.6904	19.1425	18.6787	(90
iving area f	raction								fLA =	Living area	/ (4) =	0.4211	(91
IIT 'emperature a	19.2492 diustment	19.4473	19.7203	20.0527	20.3076	20.4389	20.4621	20.4616	20.4057	20.1014	19.6224	19.2209 0.0000	(92
adjusted MIT	19.2492	19.4473	19.7203	20.0527	20.3076	20.4389	20.4621	20.4616	20.4057	20.1014	19.6224	19.2209	(93

8. Space heating requirement

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Utilisation	0.9931	0.9856	0.9692	0.9272	0.8287	0.6412	0.4543	0.4892	0.7351	0.9326	0.9851	0.9947	(94)
Useful gains	517.7382	587.8149	626.0469	627.2994	569.4564	425.0905	289.9199	303.2699	444.2211	525.1728	506.8612	491.8380	(95)
Ext temp.	4.3000	4.9000	6.5000	8.9000	11.7000	14.6000	16.6000	16.4000	14.1000	10.6000	7.1000	4.2000	(96)
Heat loss rate	e W												
	1171.3432	1136.3374	1029.5548	856.1301	658.9686	441.3509	291.9253	306.2763	478.9879	727.3903	963.9431	1162.8831	(97)
Month fracti	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.0000	0.0000	1.0000	1.0000	1.0000	(97a)
Space heating	kWh												
	486.2822	368.6072	300.2099	164.7581	66.5970	0.0000	0.0000	0.0000	0.0000	150.4498	329.0990	499.2576	(98)
Space heating												2365.2608	(98)
Space heating	per m2									(98) / (4) =	31.5368	(99)

8c. Space cooling requirement

Not applicable

Regs Region: England Elmhurst Energy Systems SAP2012 Calculator (Design System) version 4.11r11

FULL SAP CALCULATION PRINTOUT Calculation Type: New Build (As Designed)

CALCULATION OF TARGET EMISSIONS 09 Jan 2014

raction of sp	ace heat fr	om seconda:	ry/supplemen	ntary system	n (Table 11)							0.0000	(201
raction of sp												1.0000	
fficiency of												93.5000	
fficiency of pace heating			ry neating :	system, %								0.0000 2529.6907	
pace neating	requirement											2329.0907	(211
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
pace heating	486.2822	368.6072	300.2099	164.7581	66.5970	0.0000	0.0000	0.0000	0.0000	150.4498	329.0990	499.2576	(98)
pace heating	93.5000	(main heat: 93.5000	1ng system . 93.5000	93.5000	93.5000	0.0000	0.0000	0.0000	0.0000	93.5000	93.5000	93.5000	(210
pace heating	fuel (main 520.0879			176.2118	71.2268	0.0000	0.0000	0.0000	0.0000	160.9089	351.9776	533.9653	(211
ater heating			521.0001	1/0.2110	/1.2200	0.0000	0.0000	0.0000	0.0000	100.9009	331.9770	555.9055	(211
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(215
ater heating ater heating	roguiromaat												
-	193.4039	170.4727	179.0477	160.5235	157.3216	140.5926	135.0431	148.1580	147.8882	166.4527	175.9826	188.7571 79.8000	
fficiency of 217)m	87.1740	86.8187	86.1828	84.8833	82.7084	79.8000	79.8000	79.8000	79.8000	84.5456	86.4607	87.2890	
uel for water	221.8597	Wh/month 196.3547	207.7533	189.1108	190.2124	176.1812	169.2269	185.6617	185.3235	196.8791	203.5407	216.2440	
ater heating nnual totals												2338.3481	(219
pace heating												2529.6907	
pace heating	fuel - seco	ndary										0.0000	(215
lectricity fo	or pumps and	fans:											
central hea												30.0000	
main heatir otal electric		alaassa latti	h /									45.0000 75.0000	
lectricity fo				ix L)								349.3618	
otal delivere				LA L)								5292.4005	
2a. Carbon di	oxide emiss	ions - Ind	ividual hea	ting system									
								Energy		ion factor		Emissions	
								kWh/year 2529.6907		kg CO2/kWh	k	g CO2/year	10.0
pace heating pace heating								2529.6907		0.2160		546.4132 0.0000	
ater heating								2338.3481		0.2160		505.0832	
pace and wate		,										1051.4964	
umps and fans	3							75.0000		0.5190		38.9250	(26
nergy for lig								349.3618		0.5190		181.3188	
otal CO2, kg		o and water	r booting									1271.7401	
missions per uel factor (e		e and wate:	r neating									14.0200 1.5500	(2/
missions per		ting										2.4176	(27
												0.5190	
missions per	mz ror pump	s anu rans											

SUSTAINABILITY ENERGY AND SUSTAINABILITY DOCUMENT – REV. 1

Appendix B: BRUKL Document.

BRUKL Output Document

HM Government

Compliance with England Building Regulations Part L 2013

Project name

Guild Living Epsom - Non Domestic

As designed

Date: Wed Dec 18 15:27:04 2019

Administrative information

Building Details Address: Address 1, City, Postcode

Certification tool

Calculation engine: Apache Calculation engine version: 7.0.12 Interface to calculation engine: IES Virtual Environment Interface to calculation engine version: 7.0.12 BRUKL compliance check version: v5.6.a.1

Owner Details Name: Name Telephone number: Phone Address: Street Address, City, Postcode

Certifier details Name: Name Telephone number: Phone Address: Street Address, City, Postcode

Criterion 1: The calculated CO₂ emission rate for the building must not exceed the target

CO ₂ emission rate from the notional building, kgCO ₂ /m ² .annum	17.7
Target CO ₂ emission rate (TER), kgCO ₂ /m ² .annum	17.7
Building CO ₂ emission rate (BER), kgCO ₂ /m ² .annum	17.4
Are emissions from the building less than or equal to the target?	BER =< TER
Are as built details the same as used in the BER calculations?	Separate submission

Criterion 2: The performance of the building fabric and fixed building services should achieve reasonable overall standards of energy efficiency

Values which do not achieve the standards in the Non-Domestic Building Services Compliance Guide and Part L are displayed in red.

Building fabric

Element		Ua-Calc	Ui-Calc	Surface where the maximum value occurs*			
Wall**	0.35	0.17	0.18	0000023:Surf[1]			
Floor	0.25	0.15	0.15	0000022:Surf[0]			
Roof	0.25	0.15	0.15	000002A:Surf[9]			
Windows***, roof windows, and rooflights	2.2	1.4	1.4	000002A:Surf[0]			
Personnel doors	2.2	2.2	2.2	0000010:Surf[0]			
Vehicle access & similar large doors	1.5	-	-	No Vehicle access doors in building			
High usage entrance doors		-	-	No High usage entrance doors in building			
High usage entrance doors 3.5 - No High usage entrance doors in building Ua-Limit = Limiting area-weighted average U-values [W/(m²K)] - No High usage entrance doors in building							

U_{a-Calc} = Calculated area-weighted average U-values [W/(m²K)] Ui-Calc = Calculated maximum individual element U-values [W/(m²K)]

* There might be more than one surface where the maximum U-value occurs.

** Automatic U-value check by the tool does not apply to curtain walls whose limiting standard is similar to that for windows.

*** Display windows and similar glazing are excluded from the U-value check.

N.B.: Neither roof ventilators (inc. smoke vents) nor swimming pool basins are modelled or checked against the limiting standards by the tool.

Air Permeability	Worst acceptable standard	This building				
m³/(h.m²) at 50 Pa	10	3				

Building services

The standard values listed below are minimum values for efficiencies and maximum values for SFPs. Refer to the Non-Domestic Building Services Compliance Guide for details.

Whole building lighting automatic monitoring & target Whole building electric power factor achieved by pow

1- HVAC 4 - Elect Heater + Extract

	Heating efficiency	Cooling efficiency	Radiant efficiency	SFP [W/(I/s)]	HR efficiency				
This system	1	-	0.2	0	-				
Standard value	N/A	N/A	N/A	N/A	N/A				
Automatic monitoring & targeting with alarms for out-of-range values for this HVAC system YES									

2- HVAC 3 - DX Cooling

	Heating efficiency	Cooling efficiency	Radiant efficiency	SFP [W/(I/s)]	HR efficiency				
This system	3	3.4	0	0	-				
Standard value	2.5*	3.2	N/A	N/A	N/A				
Automatic monitoring & targeting with alarms for out-of-range values for this HVAC system YES									
* Standard shown is for all types >12 kW output, except absorption and gas engine heat pumps. For types <=12 kW output, refer to EN 14825 for limiting standards.									

3- HVAC 5 - FCU + MVHR

	Heating efficiency	Cooling efficiency	Radiant efficiency	SFP [W/(I/s)]	HR efficiency				
This system	3	3.4	0	1.8	0.75				
Standard value	2.5*	3.2	N/A	1.6^	0.5				
Automatic monitoring & targeting with alarms for out-of-range values for this HVAC system YES									
* Standard shown is for all types >12 kW output, except absorption and gas engine heat pumps. For types <=12 kW output, refer to EN 14825 for limiting standards.									
⁴ Limiting SFP may be extended by the amounts specified in the Non-Domestic Building Services Compliance Guide if the system includes additional components as listed in the Guide.									

4- HVAC 1 - Elect Heater + Natural Vent

	Heating efficiency	Cooling efficiency	Radiant efficiency	SFP [W/(I/s)]	HR efficiency				
This system	1	-	0.2	0	-				
Standard value	N/A	N/A	N/A	N/A	N/A				
Automatic monitoring & targeting with alarms for out-of-range values for this HVAC system YES									

5- HVAC 2 - All Air Heating

	Heating efficiency	Cooling efficiency	Radiant efficiency	SFP [W/(I/s)]	HR efficiency				
This system	3	-	0.2	1.8	0.75				
Standard value	2.5*	N/A	N/A	1.5^	0.5				
Automatic monitoring & targeting with alarms for out-of-range values for this HVAC system YES									

Standard shown is for all types >12 kW output, except absorption and gas engine heat pumps. For types <=12 kW output, refer to EN 14825 for limiting standards.

^ Limiting SFP may be extended by the amounts specified in the Non-Domestic Building Services Compliance Guide if the system includes additional components as listed in the Guide

"No HWS in project, or hot water is provided by HVAC system"

ting with alarms for out-of-range values	YES
ver factor correction	0.9 to 0.95

Local mechanical ventilation, exhaust, and terminal units

ID	System type in Non-domestic Building Services Compliance Guide
Α	Local supply or extract ventilation units serving a single area
В	Zonal supply system where the fan is remote from the zone
С	Zonal extract system where the fan is remote from the zone
D	Zonal supply and extract ventilation units serving a single room or zone with heating and heat recovery
Е	Local supply and extract ventilation system serving a single area with heating and heat recovery
F	Other local ventilation units
G	Fan-assisted terminal VAV unit
Н	Fan coil units
I	Zonal extract system where the fan is remote from the zone with grease filter

Zone name		SFP [W/(I/s)]									
ID of system type	Α	В	С	D	E	F	G	н	I	HRe	efficiency
Standard value	0.3	1.1	0.5	1.9	1.6	0.5	1.1	0.5	1	Zone	Standard
00 - Cafe	-	-	-	-	-	-	-	0.2	-	-	N/A
00 - Child Care	-	-	-	-	-	-	-	0.2	-	-	N/A
00 - Concierge & Post/WC	-	-	-	-	-	-	-	0.2	-	-	N/A
00 - Dry & Wet Wellness Multipurpose	Roor	n-	-	-	-	-	-	0.2	-	-	N/A
00 - GLR Lobby Lounge	-	-	-	-	-	-	-	0.2	-	-	N/A
00 - GLR Lobby/Lounge	-	-	-	-	-	-	-	0.2	-	-	N/A
00 - Reception Community Hub and C	oncie	rge	-	-	-	-	-	0.2	-	-	N/A
00 - Resturant and Cafe	-	-	-	-	-	-	-	0.2	-	-	N/A
00 - Retail	-	-	-	-	-	-	-	0.2	-	-	N/A
00 - Retail	-	-	-	-	-	-	-	0.2	-	-	N/A
01 - Plant/BOH	-	-	-	-	-	-	-	0.2	-	-	N/A
01 - Staff/BOH	-	-	-	-	-	-	-	0.2	-	-	N/A
01 - Staff/BOH/Kitchen	-	-	-	-	-	-	-	0.2	-	-	N/A
02 - GCS	-	-	-	-	-	-	-	0.2	-	-	N/A
02 - GCS	-	-	-	-	-	-	-	0.2	-	-	N/A
02 - GCS	-	-	-	-	-	-	-	0.2	-	-	N/A
02 - GCS	-	-	-	-	-	-	-	0.2	-	-	N/A
02 - GCS	-	-	-	-	-	-	-	0.2	-	-	N/A
02 - GCS	-	-	-	-	-	-	-	0.2	-	-	N/A
02 - GCS	-	-	-	-	-	-	-	0.2	-	-	N/A
02 - GCS	-	-	-	-	-	-	-	0.2	-	-	N/A
02 - GCS	-	-	-	-	-	-	-	0.2	-	-	N/A
02 - GCS	-	-	-	-	-	-	-	0.2	-	-	N/A
02 - GCS	-	-	-	-	-	-	-	0.2	-	-	N/A
02 - GCS	-	-	-	-	-	-	-	0.2	-	-	N/A
02 - GCS	-	-	-	-	-	-	-	0.2	-	-	N/A
02 - GCS	-	-	-	-	-	-	-	0.2	-	-	N/A
02 - GCS	-	-	-	-	-	-	-	0.2	-	-	N/A
02 - GCS	-	-	-	-	-	-	-	0.2	-	-	N/A
02 - GCS	-	-	-	-	-	-	-	0.2	-	-	N/A
02 - GCS	-	-	-	-	-	-	-	0.2	-	-	N/A

Zone name			SFP [W/(l/s)]				ficiency					
	ID of system type	Α	В	С	D	Е	F	G	н	I		enciency
	Standard value	0.3	1.1	0.5	1.9	1.6	0.5	1.1	0.5	1	Zone	Standard
02 - GCS		-	-	-	-	-	-	-	0.2	-	-	N/A
02 - GCS		-	-	-	-	-	-	-	0.2	-	-	N/A
02 - GCS		-	-	-	-	-	-	-	0.2	-	-	N/A
02 - GCS		-	-	-	-	-	-	-	0.2	-	-	N/A
02 - GCS		-	-	-	-	-	-	-	0.2	-	-	N/A
02 - GCS		-	-	-	-	-	-	-	0.2	-	-	N/A
02 - GCS		-	-	-	-	-	-	-	0.2	-	-	N/A
02 - GCS		-	-	-	-	-	-	-	0.2	-	-	N/A
02 - GCS		-	-	-	-	-	-	-	0.2	-	-	N/A
02 - GCS		-	-	-	-	-	-	-	0.2	-	-	N/A

General lighting and display lighting	Lumino	ous effic	acy [lm/W]]	
Zone name	Luminaire	Lamp	Display lamp	General lighting [W]	
Standard value	60	60	22		
00 - Acc WC	-	80	-	53	
00 - Alt Comms Room	80	-	-	46	
00 - Bins	80	-	-	24	
00 - Bins and Store Room	80	-	-	116	
00 - BT Intake	80	-	-	71	
00 - Cafe	-	80	60	345	
00 - Child Care	-	80	-	1327	
00 - Circulation	-	80	-	74	
00 - Circulation	-	80	-	30	
00 - Circulation and Stair	-	80	-	91	
00 - Concierge & Post/WC	-	80	60	280	
00 - Corridor	-	80	-	333	
00 - Corridor	-	80	-	220	
00 - Dry & Wet Wellness Multipurpose Room	-	80	-	2652	
00 - Gas Meter	80	-	-	90	
00 - GCR Lobby	-	80	-	152	
00 - Generator	80	-	-	192	
00 - GLR Lobby	-	80	-	129	
00 - GLR Lobby Lounge	-	80	-	365	
00 - GLR Lobby/Lounge	-	80	-	414	
00 - Lift	-	80	-	31	
00 - Lift Lobby	-	80	-	90	
00 - Lift Lobby for GLR	-	80	-	88	
00 - Lift Lobby to GCS	-	80	-	91	
00 - Lift Lobby to GLR	-	80	-	90	
00 - Lifts Lobby GLR	-	80	-	80	
00 - LV Switch	80	-	-	85	
00 - LV Switch	80	-	-	108	
00 - Plantroom	80	-	-	393	

General lighting and display lighting		ous effic	acy [lm/W]	General lighting [W	
Zone name	Luminaire	Lamp	Display lamp		
Standard value	60	60	22		
00 - Pool	-	80	-	1400	
00 - Prep-kitchen/Catering	-	80	-	765	
00 - Reception Community Hub and Concierge	-	80	60	1963	
00 - Resturant and Cafe	-	80	60	879	
00 - Retail	-	80	60	2324	
00 - Retail	-	80	60	2543	
00 - Sprinkler Plantroom	80	-	-	590	
00 - Stair	-	80	-	60	
00 - Stair	-	80	-	77	
00 - Stair	-	80	-	54	
00 - Stair	-	80	-	61	
00 - Stair	-	80	-	81	
00 - Stair	-	80	-	55	
00 - Stair	-	80	-	56	
00 - Stair	-	80	-	54	
00 - Stair	-	80	-	57	
00 - Store	80	-	_	30	
00 - Substation	80	_	-	235	
00 - Toilet	-	80	-	90	
00 - WC	-	80	-	66	
01 - Circulation and Stair	-	80	-	57	
01 - Corridor	-	80	-	510	
01 - Corridor	-	80	-	536	
01 - Corridor	-	80	-	281	
01 - Corridor	-	80	-	227	
01 - Corridor	-	80	-	237	
01 - Lift Lobby to GCS	-	80	-	73	
01 - Plant/BOH	80	-	-	842	
01 - Staff/BOH	80	-	_	1602	
01 - Staff/BOH/Kitchen	80	_	-	1407	
01 - Stair	-	80	_	41	
01 - Stair	_	80	-	45	
01 - Stair		80	-	44	
01 - Stair	-	80	-	46	
01 - Stair	-	80	-	63	
01 - Stair 01 - Stair	-	80	-	44	
01 - Stair 01 - Stair	-	80	-	61	
01 - Stair 01 - Stair		80	-	42	
01 - Stair 01 - Stair	-	80	-	42	
	-				
01 - Store	80	-	-	24	
02 - Cleaner's Room 02 - Corridor	80	- 80	-	10	
	-	1 80	-	100	

General lighting and display lighting	Luminous efficacy [lm/W]				
Zone name	Luminaire	Lamp	Display lamp	General lighting [W	
Standard value	60	60	22		
02 - Corridor	-	80	-	227	
02 - Corridor	-	80	-	301	
02 - Corridor	-	80	-	511	
02 - Corridor	-	80	-	1334	
02 - Ensuite	-	80	-	30	
02 - Ensuite	-	80	-	27	
02 - Ensuite	_	80	-	27	
02 - Ensuite	_	80	-	27	
02 - Ensuite	_	80	-	30	
02 - Ensuite	-	80	-	30	
02 - Ensuite	_	80	-	30	
02 - Ensuite	_	80	-	30	
02 - Ensuite		80		30	
02 - Ensuite	-	80	-	30	
02 - Ensuite	-	80	-	27	
	-		-		
02 - Ensuite	-	80	-	27	
02 - Ensuite	-	80	-	30	
02 - Ensuite	-	80	-	30	
02 - Ensuite	-	80	-	30	
02 - Ensuite	-	80	-	30	
02 - Ensuite	-	80	-	30	
02 - Ensuite	-	80	-	30	
02 - Ensuite	-	80	-	30	
02 - Ensuite	-	80	-	30	
02 - Ensuite	-	80	-	27	
02 - Ensuite	-	80	-	30	
02 - Ensuite	-	80	-	27	
02 - Ensuite	-	80	-	30	
02 - Ensuite	-	80	-	27	
02 - Ensuite	-	80	-	30	
02 - Ensuites	-	80	-	30	
02 - GCS	-	80	-	68	
02 - GCS	_	80	-	68	
02 - GCS	_	80	-	69	
02 - GCS	_	80	-	68	
02 - GCS	_	80	-	60	
02 - GCS	_	80	-	67	
02 - GCS	-	80	-	68	
02 - GCS	-	80	-	68	
02 - GCS		80		69	
	-	1	-		
02 - GCS	-	80	-	60	
02 - GCS	-	80	-	68	
02 - GCS	-	80	-	60	

General lighting and display lighting	Lumino	ous effic		
Zone name	Luminaire	Lamp	Display lamp	General lighting [W]
Standard value	60	60	22	
02 - GCS	-	80	-	68
02 - GCS	-	80	-	68
02 - GCS	-	80	-	88
02 - GCS	-	80	-	68
02 - GCS	-	80	-	67
02 - GCS	-	80	-	67
02 - GCS	-	80	-	68
02 - GCS	-	80	-	69
02 - GCS	-	80	-	60
02 - GCS	-	80	-	68
02 - GCS	-	80	-	61
02 - GCS	-	80	-	60
02 - GCS	-	80	-	67
02 - GCS	-	80	-	69
02 - GCS	-	80	-	61
02 - GCS	-	80	-	61
02 - Lift Lobby	-	80	-	75
02 - Linen and Storage	80	-	-	22
02 - Slice Room	80	-	-	11
02 - Stair	-	80	-	46
02 - Stair	-	80	-	44
02 - Stair	-	80	-	61
02 - Stair	-	80	-	63
02 - Stair	-	80	-	42
02 - Stair	-	80	-	44
02 - Stair	-	80	-	44
02 - Stair	-	80	-	43
02 - Stair	-	80	-	45
02 - Stairs	-	80	-	59
02 - Store	80	-	-	42
02 - Store	80	-	-	21
02 - Store	80	-	-	22
03 - Corridor	-	80	-	510
03 - Corridor	-	80	-	281
03 - Corridor	-	80	-	227
03 - Corridor	-	80	-	620
03 - Corridor	-	80	-	83
03 - Lift Plant Room	80	-	-	123
03 - Stair	-	80	-	45
03 - Stair	-	80	-	42
03 - Stair	-	80	-	44
03 - Stair	-	80	-	48
03 - Stair	-	80	-	44

General lighting and display lighting	Lumino	ous effic	General lighting [W	
Zone name	Luminaire Lam			
Standard value	60	60	22	
03 - Stair	-	80	-	63
03 - Stair	-	80	-	61
03 - Stair	-	80	-	42
03 - Stair	-	80	-	44
03 - Stairs	-	80	-	59
03 - Store	80	-	-	30
04 - Corridor	-	80	-	281
04 - Corridor	-	80	-	450
04 - Corridor	-	80	-	377
04 - Stair	-	80	-	44
04 - Stair	-	80	-	61
04 - Stair	-	80	-	46
04 - Stair	-	80	-	44
04 - Stair	-	80	-	42
04 - Stair	-	80	-	42
05 - Corridor	-	80	-	451
05 - Corridor	-	80	-	377
05 - Stair	-	80	-	44
05 - Stair	_	80	-	42
05 - Stair	_	80	-	46
05 - Stair	-	80	-	44
05 - Stair	-	80	-	61
06 - Corridor	_	80	-	451
06 - Corridor	_	80	-	377
06 - Stair	_	80	-	44
06 - Stair	_	80	-	61
06 - Stair	_	80	_	44
06 - Stair	_	80	-	46
06 - Stair	_	80	-	42
07 - Corridor	_	80	-	393
07 - Corridor	_	80	-	469
07 - Stair	_	80	-	47
07 - Stair	_	80	-	64
07 - Stair	_	80	-	46
07 - Stair	-	80	-	48
07 - Stair 07 - Stair	-	80	-	48
07 - Stall 08 - Corridor	-	80		427
08 - Corridor 08 - Corridor	-	80	-	358
08 - Stair		80		39
	-		-	
08 - Stair	-	80	-	58
08 - Stair	-	80	-	42
08 - Stair	-	80	-	41
08 - Stair	-	80	-	44

General lighting and display lighting	Luminous efficacy [lm/W]			
Zone name	Luminaire	Lamp	Display lamp	General lighting [W]
Standard value	60	60	22	
07 - Corridor	-	80	-	269
08 - Corridor	-	80	-	249
06 - Corridor	-	80	-	260
05 - Corridor	-	80	-	260
04 - Corridor	-	80	-	260
03 - Corridor	-	80	-	260

Criterion 3: The spaces in the building should have appropriate passive control measures to limit solar gains

Zone	Solar gain limit exceeded? (%)	Internal blinds used?
00 - Alt Comms Room	N/A	N/A
00 - Cafe	NO (-9.5%)	NO
00 - Child Care	YES (+21.3%)	NO
00 - Concierge & Post/WC	YES (+56.9%)	NO
00 - Dry & Wet Wellness Multipurpose Room	NO (-46.5%)	NO
00 - GLR Lobby Lounge	NO (-7.3%)	NO
00 - GLR Lobby/Lounge	N/A	N/A
00 - Pool	NO (-31.9%)	NO
00 - Reception Community Hub and Concierge	YES (+12.4%)	NO
00 - Resturant and Cafe	NO (-19.7%)	NO
00 - Retail	NO (-45.9%)	NO
00 - Retail	NO (-37.7%)	NO
01 - Plant/BOH	NO (-53.1%)	NO
01 - Staff/BOH	NO (-36.5%)	NO
01 - Staff/BOH/Kitchen	N/A	N/A
02 - GCS	NO (-79.3%)	NO
02 - GCS	NO (-74.5%)	NO
02 - GCS	NO (-72.1%)	NO
02 - GCS	NO (-78.5%)	NO
02 - GCS	NO (-79.3%)	NO
02 - GCS	NO (-81.7%)	NO
02 - GCS	NO (-73.7%)	NO
02 - GCS	NO (-75.1%)	NO
02 - GCS	NO (-77.6%)	NO
02 - GCS	NO (-68.4%)	NO
02 - GCS	NO (-66.3%)	NO
02 - GCS	NO (-72.1%)	NO
02 - GCS	NO (-73.4%)	NO
02 - GCS	NO (-76.1%)	NO
02 - GCS	NO (-68%)	NO
02 - GCS	NO (-78.8%)	NO
02 - GCS	NO (-79%)	NO
02 - GCS	NO (-78.6%)	NO
02 - GCS	NO (-74.9%)	NO

Zone	Solar gain limit exceeded? (%)	Internal blinds used?
02 - GCS	NO (-78.8%)	NO
02 - GCS	NO (-70%)	NO
02 - GCS	NO (-79.1%)	NO
02 - GCS	NO (-71.1%)	NO
02 - GCS	NO (-65.7%)	NO
02 - GCS	NO (-76.4%)	NO
02 - GCS	NO (-77.7%)	NO
02 - GCS	NO (-75.6%)	NO
02 - GCS	NO (-76%)	NO

Criterion 4: The performance of the building, as built, should be consistent with the calculated BER

Separate submission

Criterion 5: The necessary provisions for enabling energy-efficient operation of the building should be in place

Separate submission

EPBD (Recast): Consideration of alternative energy systems

Were alternative energy systems considered and analy Is evidence of such assessment available as a separate s Are any such measures included in the proposed design?

lysed as part of the design process?	NO
submission?	NO
?	NO

Technical Data Sheet (Actual vs. Notional Building)

Building Global Parameters

	Actual	Notional	
Area [m ²]	11764.2	11764.2	
External area [m ²]	12003.7	10399.1	
Weather	LON	LON	
Infiltration [m ³ /hm ² @ 50Pa]	3	3	
Average conductance [W/K]	4181.44	4251.33	
Average U-value [W/m ² K]	0.35	0.41	
Alpha value* [%]	11.78	10	

* Percentage of the building's average heat transfer coefficient which is due to thermal bridging

Build	ing Use
0/ 1	
% Area	Building Type
4	A1/A2 Retail/Financial and Professional services
4	A3/A4/A5 Restaurants and Cafes/Drinking Est./Takeaways
	B1 Offices and Workshop businesses
	B2 to B7 General Industrial and Special Industrial Groups
	B8 Storage or Distribution
	C1 Hotels
7	C2 Residential Institutions: Hospitals and Care Homes
	C2 Residential Institutions: Residential schools
	C2 Residential Institutions: Universities and colleges
	C2A Secure Residential Institutions
61	Residential spaces
22	D1 Non-residential Institutions: Community/Day Centre
	D1 Non-residential Institutions: Libraries, Museums, and Galleries D1 Non-residential Institutions: Education
	D1 Non-residential Institutions: Education D1 Non-residential Institutions: Primary Health Care Building
	D1 Non-residential Institutions: Crown and County Courts
2	D2 General Assembly and Leisure, Night Clubs, and Theatres
4	Others: Passenger terminals
	Others: Emergency services
	Others: Miscellaneous 24hr activities
	Others: Car Parks 24 hrs
	Others: Stand alone utility block

H	VAC Sys	stems Per	formanc	e						
Sys	stem Type	Heat dem MJ/m2	Cool dem MJ/m2	Heat con kWh/m2	Cool con kWh/m2	Aux con kWh/m2	Heat SSEEF	Cool SSEER	Heat gen SEFF	Cool gen SEER
[ST] Other loca	al room hea	ter - unfanr	ned, <mark>[HS]</mark> Di	irect or stor	age electric	c heater, [H	FT] Electric	ity, [CFT] E	lectricity
	Actual	3.1	0	1	0	0	0.84	0	1	0
	Notional	7.4	0	2.4	0	0	0.86	0		
[ST	[ST] Fan coil systems, [HS] Heat pump (electric): air source, [HFT] Electricity, [CFT] Electricity									
	Actual	38.5	94.8	3.9	9.4	18.4	2.75	2.8	3	3.6
	Notional	29.9	72.9	3.2	5.3	17.4	2.56	3.79		
[ST	[ST] Other local room heater - unfanned, [HS] Direct or storage electric heater, [HFT] Electricity, [CFT] Electricity									
	Actual	246.3	0	81.2	0	51.2	0.84	0	1	0
	Notional	315.4	0	101.6	0	41	0.86	0		
[ST] Central he	eating using	g air distrib	ution, [HS]	Heat pump	(electric): a	ir source, [HFT] Electr	icity, [CFT]	Electricity
	Actual	642.9	0	58.2	0	27.5	3.07	0	3	0
	Notional	609.8	0	66.2	0	26.4	2.56	0		
[ST] Single roo	om cooling	system, [HS	6] Heat pum	np (electric)	: air source	e, [HFT] Ele	ctricity, [CF	T] Electrici	ty
	Actual	0	3148.2	0	325	0	2.94	2.69	3	3.6
	Notional	0	1844.5	0	135.2	0	2.56	3.79		
[ST] No Heatin	g or Coolin	g							
	Actual	0	0	0	0	0	0	0	0	0
	Notional	0	0	0	0	0	0	0		

Energy Consumption by End Use [kWh/m²]

	Actual	Notional
Heating	4.88	6.17
Cooling	3.07	1.68
Auxiliary	8.43	6.45
Lighting	10.58	16.13
Hot water	8.34	7.05
Equipment*	26.79	26.79
TOTAL**	35.31	37.47

* Energy used by equipment does not count towards the total for consumption or calculating emissions. ** Total is net of any electrical energy displaced by CHP generators, if applicable.

Energy Production by Technology [kWh/m²]

	Actual	Notional
Photovoltaic systems	0	0
Wind turbines	0	0
CHP generators	0	0
Solar thermal systems	0	0

Energy & CO₂ Emissions Summary

	Actual	Notional
Heating + cooling demand [MJ/m ²]	62.74	56
Primary energy* [kWh/m ²]	125.78	121.64
Total emissions [kg/m²]	17.4	17.7

* Primary energy is net of any electrical energy displaced by CHP generators, if applicable.

Key to terms

Heat dem [MJ/m2]	= Heating energy demand
Cool dem [MJ/m2]	= Cooling energy demand
Heat con [kWh/m2]	= Heating energy consumption
Cool con [kWh/m2]	= Cooling energy consumption
Aux con [kWh/m2]	= Auxiliary energy consumption
Heat SSEFF	= Heating system seasonal efficiency (for notional build
Cool SSEER	= Cooling system seasonal energy efficiency ratio
Heat gen SSEFF	= Heating generator seasonal efficiency
Cool gen SSEER	= Cooling generator seasonal energy efficiency ratio
ST	= System type
HS	= Heat source
HFT	= Heating fuel type
CFT	= Cooling fuel type

ilding, value depends on activity glazing class)

Key Features

The Building Control Body is advised to give particular attention to items whose specifications are better than typically expected.

Building fabric

Element	U і-тур	Ui-Min	Surface where the minimum value occurs*
Wall	0.23	0.12	0000019:Surf[6]
Floor		0.1	0200000:Surf[37]
Roof	0.15	0.15	000002A:Surf[9]
Windows, roof windows, and rooflights	1.5	1.4	0000002A:Surf[0]
Personnel doors	1.5	2.2	0000010:Surf[0]
Vehicle access & similar large doors	1.5	-	No Vehicle access doors in building
High usage entrance doors	1.5	-	No High usage entrance doors in building
U _{i-Typ} = Typical individual element U-values [W/(m ² K))]		U _{i-Min} = Minimum individual element U-values [W/(m²K)]
* The second shall be as second been second as sufficient the second sec			

* There might be more than one surface where the minimum U-value occurs.

Air Permeability	Typical value	This building
m³/(h.m²) at 50 Pa	5	3

SUSTAINABILITY ENERGY AND SUSTAINABILITY DOCUMENT – REV. 1

Appendix C: Calculation of Energy from LZC Sources.

Domestic

BE LEAN (Nos from DER Worksheet)						
		kWh/year				
URN	TFA (m2)	Total Energy Used (238)				
Type 01F	77.65	4389.3938				
Type 02FC	75.14	3659.8988				
Type 03FC	91.96	4181.7541				
Type 04F	57.06	3262.215				
Type 05N	75.27	2929.9897				
Type 06N	59.48	2906.0001				
Type 07F	80.82	4196.6287				
Type 08N	58.06	2582.456				
Type 09N	109.06	4443.0193				
Type 10R	52.49	3188.5307				
Type 11	75.24	3084.3294				
Type 12N	81.39	3667.7202				
Type 13N	96.77	3505.1976				
Type 14R	99.56	5022.0874				
Type 15R	75	4001.0825				
Modelled Floor Area Total Resi Floor Area	1,165 41,158	55020.3033 1943901.1557				

Be Green (Nos from DER Worksheet) kWh/year					
Total Delivered Energy (238)	Elec produced from PV (233)	Elec produced by other renewables			
4023.219	366.1748	0			
3307.542	352.3568	0			
3746.4898	435.2643	0			
2992.7657	269.4493	0			
2577.6329	352.3568	0			
2622.7328	283.2673	0			
3816.636	379.9927	0			
2306.0977	276.3583	0			
3924.8475	518.1718	0			
2939.8082	248.7225	0			
2731.9725	352.3569	0			
3280.8185	386.9017	0			
3049.2064	455.9912	0			
4552.2782	469.8092	0			
3648.7256	352.3569	0			

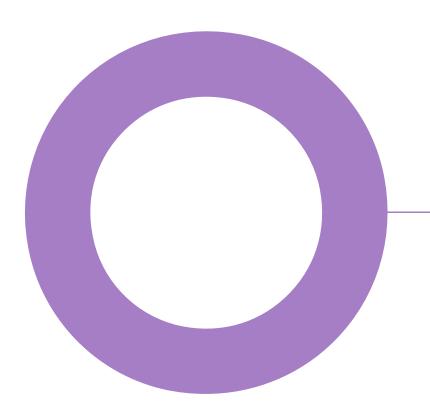
Total Energy Renewables provides kWh/year	% of Energy Requirements
366.1748	8.34%
352.3568	9.63%
435.2643	10.41%
269.4493	8.26%
352.3568	12.03%
283.2673	9.75%
379.9927	9.05%
276.3583	10.70%
518.1718	11.66%
248.7225	7.80%
352.3569	11.42%
386.9017	10.55%
455.9912	13.01%
469.8092	9.35%
352.3569	8.81%
5499.5305	10.00%

Non-Domestic

				Ener	gy kWh/m2/year				
URN	TFA (m2)	Heating	Cooling	Auxiliary	Lighting	Hot Water	Total Energy	Energy provided by Heat Pump	% of Energy Requirements
Non Residential Lean	11764.2	4.878	3.075	8.426	10.622	8.343	35.344	10.637	30.10%

FA (m2)	Requirements
41,158	10.00%
11,764	30.10%
	-,

SUSTAINABILITY ENERGY AND SUSTAINABILITY DOCUMENT – REV. 1


Appendix D: BREEAM UK New Construction 2018 Pre-Assessment Document.

Guild Living Epsom. Epsom. Guild Living.

SUSTAINABILITY

BREEAM UK NEW CONSTRUCTION 2018 PRE-ASSESSMENT REPORT APPROACH TO RETAIL, AND OTHER BUILDING TYPE (NURSERY) AREAS FOR GUILD LIVING EPSOM. REVISION 0 – 20 DECEMBER 2019

Audit Sheet.

Rev.	Date	Description	Prepared	Verified
0	20/12/2019	Issue for Planning	AB	RC/GB

This document has been prepared for Guild Living only and solely for the purposes expressly defined herein. We owe no duty of care to any third parties in respect of its content. Therefore, unless expressly agreed by us in signed writing, we hereby exclude all liability to third parties, including liability for negligence, save only for liabilities that cannot be so excluded by operation of applicable law. The consequences of climate change and the effects of future changes in climatic conditions cannot be accurately predicted. This report has been based solely on the specific design assumptions and criteria stated herein.

BREEAM Audit box.

Assessment	Retail: Shell Only		
	Other Building Types (Nursery): Shell Only		
BRE registration number	Retail: BREEAM-0080-4120		
	Other Building Types Nursery: BREEAM-0080-4146		
Licensed assessor	Alexandra Bryant		
Assessor support	N/A		
BREEAM scheme	BREEEAM UK New Construction 2018.		
BREEAM scheme version	Issue 3.0		
Assessment Stage	Pre-Assessment		

BREEAM Credit filtering box.

Building type and sub-group	Retail		
	Other Building Types (Nursery)		
Building floor area	Retail: TBC		
	Other Building Types Nursery: TBC		
Building services (heating)	Other type of heating system – to be installed by tenant.		
Building services (cooling)	Other type of heating system – to be installed by tenant.		
Building services (DHW system)	Direct Electric/Hot water cylinders - to be installed by tenant.		
Building services (controls)	Standard times/controls		
Commercial cold storage systems	N/A		
Laboratory (type, area and size)	N/A		
Laboratory containment level	N/A		
Fume cupboards / containment devices	N/A		
Unregulated water uses	Yes (Irrigation – TBC)		

Contents.

Audit Sheet.	2
BREEAM Audit box.	3
BREEAM Credit filtering box.	3
1. Executive Summary.	5
2. Assessment Details.	6
2.1 Introduction	6
2.2 Assessment Type	6
2.3 Assessment Rating	6
2.4 Pre-Assessment	6
3. Project Team Members.	6
4. Summary Score Sheet.	7
5. Early Action Credits.	8
6. Conclusion.	9

1. Executive Summary.

This report provides an outline approach to the BREEAM 2018 New Construction (NC) Pre-Assessment strategy for the proposed commercial areas included in the Guild Living Epsom development. Upon initial review the proposed development is anticipated to include two main components: (1) Retail space, and (2) Other Building Type (OBT) areas – Nursery.

In order to demonstrate compliance with Epsom Ewell Borough Council, Core Strategy (2007) Policy CS6 and Guild Living Brand Standards, this Pre-Assessment will outline a route for each of the proposed areas to achieve 'BREEAM 'Very Good' (min. 55%>), with an aspiration for BREEAM 'Excellent' where feasible.

The current anticipated baseline score for the proposed Guild Living Epsom, Retail and Nursery areas are as follows:

- Retail Baseline score / rating: 64.74% (BREEAM 'Very Good'); and
- Other building type (Nursery) Baseline score / rating: 64.74% (BREEAM 'Very Good').

All assessments are currently exceeding the minimum requirements for BREEAM 'Very Good' rating by X-X%. We recommend a margin of at least 5%–7% is recommended to be attained above the minimum required score at this stage in order to secure the target rating, as well as consider potential design changes and constraints identified during the construction stage.

Figure 1 summarises a visual representation of the current anticipated 'baseline' scores for each assessment, relative to the minimum required score for each BREEAM rating threshold.

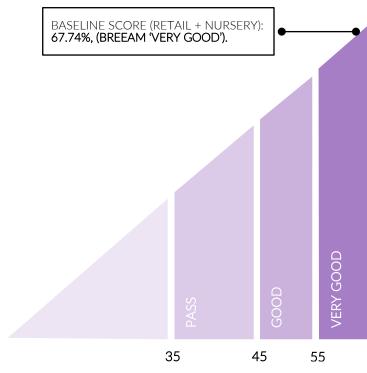


Figure 1: BREEAM 2018 Scale and Anticipated Performance Scores.

70

2. Assessment Details.

2.1 Introduction

This report provides an outline approach to the BREEAM 2018 New Construction Pre-Assessment strategy for the proposed commercial areas included in the Guild Living Epsom development

2.2 Assessment Type

Two BREEAM UK New Construction (NC) 2018 assessments are currently required for the proposed development. These assessments include:

- Retail: BREEAM UK NC 2018 Shell Only assessment; and
- Other building type (Nursery) BREEAM UK NC 2018 Shell Only assessment.

Figure 2 below identifies the alignment with MEP level of fit out and the BREEAM Assessment methodologies being completed.

Types of office fit out

Figure 2 BREEAM Assessment Type Definitions

2.3 Assessment Rating

In line with Epsom Ewell Borough Council, Core Strategy (2007) Policy CS6 and Guild Living Brand Standards, the retail and nursery areas will be designed to achieve a BREEAM UK New Construction (NC) 2018 'Very Good' rating (55%>) with an aspiration for 'Excellent' where feasible.

2.4 Pre-Assessment

Two initial Pre-Assessment strategies were undertaken by an independently qualified BREEAM Assessor prior to review by the design team. The strategies set out a route to achieving BREEAM 'Very Good' (55%>), as well as highlighted the key stages evidence was to be received by, additional appointments, and the design team members responsible for each credit issue.

Credits currently included in the credit score have been reviewed by the design team, and each team member is expected to provide feedback regarding credits under their responsibility, identifying any relevant issues. Once comments have been raised by the project team, the report and the predicted scores will be updated.

The following predicted scores were calculated based upon experience with similar buildings and Hoare Lea's current understanding of the proposed development:

- Retail Baseline score / rating: 64.74% (BREEAM 'Very Good'); and
- Other building type (Nursery) Baseline score / rating: 64.74% (BREEAM 'Very Good').

All mandatory and minimum standards for the BREEAM 'Very Good' rating have been incorporated within the assessment strategy for the targeted baseline score.

3. Project Team Members.

Discipline	Organisation
Developer/Client	Guild Living
Project Manager	Cast Consultancy
Quantity Surveyor Team/Cost Consultant	Cast Consultancy
Architect	Marchese Partners
Principle Designer	Orsa
Building Services Consultant	Hoare Lea LLP
Civils / Drainage / Structural Consultant	Hydrock
Vertical Transportation Consultant	ТВС
Security Consultant	ТВС
Daylighting and Glare Control Consultant	Avison Young
Air Quality Consultant	ТВС
Energy Assessor (Part L)	Hoare Lea LLP
Landscape Architect	ТВС
Ecologist	Arup
Acoustician	Hoare Lea LLP
Planning Consultant	QED
Transport Consultant	Mayer Browne

4. Summary Score Sheet.

The summary table below highlights the list of targeted credits for the current BREEAM UK NC 2018 Pre-Assessment. Mandatory credits to achieve a 'Very Good' rating and above are highlighted by **(M)**. Additional mandatory credits for an 'Excellent' or 'Outstanding' rating is highlighted by **(Me) and (Mo)** respectively. Exemplary (innovation) credits are written in brackets, e.g. (+1).

Table 1: BREEAM Target Summary.

Category	Issue	Retail Shell Only		OBT Nurse	ry Shell Only
		Available	Targeted	Available	Targeted
Management	Man 01: Project brief and design	4	2	4	2
	Man 02: Lifecycle cost and service life planning	4	4	4	4
	Man 03: Responsible construction practices (M_e) , (M_o)	6	6	6	6
	Man 04: Commissioning and handover (M _e), (M _o)	1	1	1	1
	Man 05: Aftercare (M _e), (M _o)	N/A	N/A	N/A	N/A
Health &	Hea 01: Visual comfort	4	3	4	3
Wellbeing	Hea 02: Indoor air quality	N/A	N/A	N/A	N/A
	Hea 04: Thermal comfort	N/A	N/A	N/A	N/A
	Hea 05: Acoustic performance	1	1	1	1
	Hea 06: Safety	1	1	1	1
	Hea 07 Safe and healthy surroundings	2	1	2	1
Energy	Ene 01: Reduction of energy use and CO_2 emissions (M _e) (M _o)	9	1 1 0	9	0
	Ene 02: Energy monitoring (M) (M_e) (M_o)	N/A	N/A	N/A	N/A
	Ene 03: External lighting	1	1	1	1
	Ene 04: Low carbon design	3	0	3	0
	Ene 05: Energy efficient cold storage	N/A	N/A	N/A	N/A
	Ene 06: Energy efficient transportation systems	N/A	N/A	N/A	N/A
	Ene 07 Energy efficient laboratory systems	N/A	N/A	N/A	N/A
	Ene 08: Energy efficient equipment	N/A	N/A	N/A	N/A
Transport	Tra 01: Transport assessment and travel plan	2	2	2	2
	Tra 02: Sustainable transport measures	10	5	10	5
Water	Wat 01: Water consumption (M) (M_e) (M_o)	N/A	N/A	N/A	N/A
	Wat 02: Water monitoring (M) (Me) (Mo)	1	1	1	1

Category	Issue	Retail S	hell Only	OBT Nursery Shell Only	
		Available	Targeted	Available	Targeted
	Wat 03: Water leak detection and prevention	1	1	1	1
	Wat 04: Water efficient equipment	1	1	1	1
Materials	Mat 01: Environmental impacts from construction products - Building life cycle assessment	7	2	7	2
	Mat 02: Environmental impacts from construction products	1	1	1	1
	Mat 03: Responsible sourcing of materials (M) (Me) (Mo) 4 2	2	4	2	
	Mat 05: Designing for durability and resilience	t 05: Designing for durability and	1	1	
	Mat 06: Material efficiency	1	0	1	0
Waste	Wst 01: Construction waste management (Mo)	5	4	5	4
	Wst 02: Use of recycled and sustainably sourced aggregates	ecycled and sustainably 1 0	1	0	
	Wst 03: Operational waste (Me), (Mo)	1	1	1	1
	Wst 04 Speculative floor and ceiling finishes	N/A	N/A	N/A	N/A
	Wst 05: Adaptation to climate change	1	1	1	1
	Wst 06: Design for disassembly and adaptability	2	2	2	2
Land Use	LE 01: Site selection	2	1	2	1
and Ecology	LE 02: Identifying and understanding the risks and opportunities for the project	2	2	2	2
	LE 03: Managing negative impacts on ecology	3	3	3	3
	LE 04: Change and enhancement of ecological value	4	3	4	3
	LE 05: Long term ecology management and maintenance	2	2	2	2
Pollution	Pol 01: Impact of refrigerants	N/A	N/A	N/A	N/A
	Pol 02: Local air quality	N/A	N/A	N/A	N/A
	Pol 03: Flood and surface water management	5	4	5	4
	Pol 04: Reduction of night time light pollution	1	1	1	1
	Pol 05: Reduction of noise pollution	N/A	N/A	N/A	N/A

SUSTAINABILITY BREEAM UK NEW CONSTRUCTION 2018 PRE-ASSESSMENT REPORT – REV. 0

Category	Issue	Retail Shell Only		OBT Nurser	Nursery Shell Only	
		Available	Targeted	Available	Targeted	
Innovation	Inn 01: Approved Innovation and Exemplary Level Credits	10	1	10	1	
Totals	Targeted weighted score:	64.70% 64.70%			70%	
TULAIS	Targeted weighted Rating	BREEAM Very Good (55%>)				

5. Early Action Credits.

Under the BREEAM Assessment, there are a number of credits that are time critical and require early action by the design team in order for the credits to be achieved. For these credits, the actions required prior to end of RIBA Stages 1 and 2.

It is advised the Design Team fully to review the actions required in Tables 2 and Table 3 below to understand the required evidence needed to be demonstrated prior to the completion of RIBA Stages 1 and 2.

Table 2: BREEAM NC 2018 RIBA Stage 1 Evidence Requirements

Credit Issues	RIBA Stage 1 Actions	Owner	Comment
LE 02 Ecological risks and opportunities	 A Suitably Qualified Ecologist (SQE) carries out a survey and evaluation (see Methodology) for the site early enough to influence site preparation works, layout and, where necessary, strategic planning decisions. The SQE's survey and evaluation determines the site's ecological baseline (see Definitions), including: Current and potential ecological value and condition of the site and related areas within the Zone of Influence. Direct and indirect risks to current ecological value from the project. Capacity and feasibility for enhancement of the site's ecological value and, where relevant, areas within the Zone of Influence. 	Arup	Arup are providing Ecological Impact Assessment to support the planning application, with a Preliminary Ecological Appraisal and Bat Report appended

Table 3 BREEAM NC 2018 RIBA Stage 2 Evidence Requirements

Credit Issues	RIBA Stage 2 Actions	Owner	Comment
Man 01 Project brief and design	Prior to completion of the Concept Design, the project delivery stakeholders meet to identify and define for each key phase of project delivery: (a) Roles; (b) Responsibilities, and (c) Contributions. The project team demonstrates how the project delivery stakeholders' contributions and the consultation process outcomes influence the following: (a) Initial Project Brief; (b) Project	Guild Living + Cast Consultancy	DAS Report to be provided alongside early stage meeting minutes, and Public Consultation Documents.

Credit Issues	RIBA Stage 2 Actions	Owner	Comment
	Execution Plan; (c) Communication Strategy; and (d) Concept Design.		
	Prior to completion of the Concept Design, the design team consult with all interested parties on matters that cover the minimum consultation content. Demonstrate how the stakeholder contributions and consultation exercise outcomes influence the Initial Project Brief and Concept Design.		
Man 02: Life cycle costing and service life planning	Stage 2 Elemental Life Cycle Cost analysis is completed in line with 'Standardised method of life cycle costing for construction procurement' PD 156865: 2008(6). The plan informs the client on: (a) Future replacement costs over a period of analysis as required by the client (e.g. 20, 30, 50 or 60 years); and (b) Includes service life, maintenance and operation cost estimates.	Cast Consultancy	Cast Consultancy to provide a fee to complete the work.
Hea 06 Security	Appoint a Suitability Qualified Security Specialist (SQSS) to conduct a Security Needs Assessment (SNA).	ТВС	Security Needs Assessment to be completed ASAP.
Tra 01 Transport assessment and travel plan	A site-specific transport assessment AND draft travel plan, are provided demonstrating full compliance with Tra 01 issue.	Mayer Browne	Mayer Browne have confirmed they will be providing a Transport Assessment to comply with BREEAM criteria.
Wst 01 Construction waste management	Complete a pre-demolition audit of any existing buildings, structures or hard surfaces being considered for Demolition*. *If Demolition is not taking place at RIBA Stage 2 this documentation can be accepted at a later stage.	Demolition Contractor	Demolition is not required to take place until after Stage 3. Requirement will be captured within Demolition Specification for Contractor.
Wst 05 Adaptation to climate change	Conduct a climate change adaptation strategy appraisal. The assessment covers the installation of building services and renewable systems, as well as structural and fabric resilience aspects.	Marchese Partners + Hydrock + Hoare Lea LLP	Wst 05 Proforma document to be completed and supporting drawings to be provided.
Wst 06 Design for disassembly and adaptability	Conduct a study to explore the ease of disassembly and the functional adaptation potential of different design Scenarios. Develop recommendations or solutions based on the study during or prior to Concept Design, that aim to enable and facilitate disassembly and functional adaptation.	Marchese Partners Hydrock + Hoare Lea LLP	Wst 06 Proforma document to be completed and supporting drawings to be provided.

SUSTAINABILITY BREEAM UK NEW CONSTRUCTION 2018 PRE-ASSESSMENT REPORT -REV. O

Credit Issues	RIBA Stage 2 Actions	Owner	Comment
LE 02 Ecological risks and opportunities	The project team liaise and collaborate with representative stakeholders early enough to influence key planning decisions to: (a) Identify the optimal ecological outcomes for the site; and (b) Identify, appraise and select measures to meet the optimal ecological outcomes for the site in line with the mitigation hierarchy of action, according to the route being used.	Arup	Arup to provide a fee in order to undertake BREEAM Ecology Report and 5-year Landscape and Habitat Management plan.
LE 03 Managing impacts on ecology	Further planning to avoid and manage negative ecological impacts on-site is carried out early enough to influence the concept design and design brief as well as site preparation planning.		

6. Conclusion.

Based upon an initial credit review, it is anticipated that the assessed areas can achieve a targeted score well within the BREEAM 'Very Good' (55%>) benchmark rating. Currently the targeted scores for each assessment are as follows:

- Retail Baseline score / rating: 64.74% (BREEAM 'Very Good'); and
- Other building type (Nursery) Baseline score / rating: 64.74% (BREEAM 'Very Good').

Following from this Pre-Assessment issue it is advised all early stage credits are fully reviewed and actioned as soon as possible in order to secure the strategy moving forward.

Figures 3 and 4 below provide a visual representation for the scores targeted and unachievable credit scores currently identified for each assessment.

Figure 3 BREEAM Performance Summary and Targeted Credits: Retail and Nursery assessment.

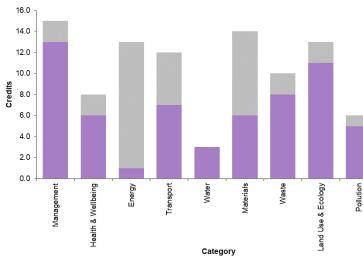
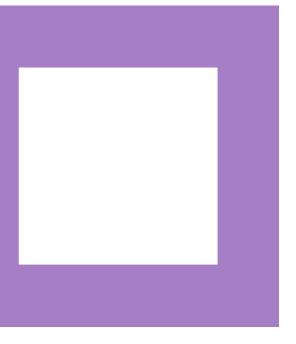


Figure 4 BREEAM Performance Summary and Targeted Credits: Retail and Nursery assessment. Bar representation.

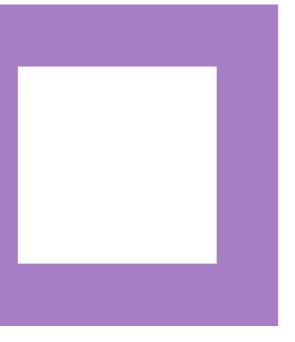

ALEXANDRA BRYANT

SUSTAINABILITY ASSESSOR

alexandrabryant@hoarelea.com

HOARELEA.COM

Enterprise House Old School Close Ferndown Bournemouth BH22 9UN England



LIAM HOLDEN ENGINEER

liamholden@hoarelea.com

HOARELEA.COM

Enterprise House Old School Close Ferndown Bournemouth BH22 9UN England

