

Guild Living Epsom. Epsom. Guild Living.

SUSTAINABILITY

ENERGY AND SUSTAINABILITY DOCUMENT

REVISION 5 - 03 FEBRUARY 2021

SUSTAINABILITY
ENERGY AND SUSTAINABILITY

2

Audit sheet.

Rev.	Date	Description	Prepared	Verified
0	12/12/2019	Draft Issue for Comment	JE	LH/BH
1	20/12/2019	Issue for Planning Submission	LH	ВН
2	30/03/2020	Updated with Comments	LH	MW
3	15/01/2021	Updated for Planning	AB/LH	JD/MW
4	22/01/2021	Updated with Comments	AB/LH	JD/MW
5	03/02/2021	Updated for Planning	AB/LH	JD/MW

DOCUMENT - REV. 5

This document has been prepared for Guild Living only and solely for the purposes expressly defined herein. We owe no duty of care to any third parties in respect of its content. Therefore, unless expressly agreed by us in signed writing, we hereby exclude all liability to third parties, including liability for negligence, save only for liabilities that cannot be so excluded by operation of applicable law. The consequences of climate change and the effects of future changes in climatic conditions cannot be accurately predicted. This report has been based solely on the specific design assumptions and criteria stated herein.

Document reference: 210203 GLE Energy and Sustainability Document Rev 5.docx

GUILD LIVING EPSOM GUILD LIVING

SUSTAINABILITY ENERGY AND SUSTAINABILITY DOCUMENT - REV. 5

Contents.

Audit sheet.	2
Executive Summary.	4
Carbon Dioxide Emissions.	4
Sustainability.	4
1. Introduction.	5
2. Policy Requirements & Building Regulations.	5
2.1 The Building Regulations	5
2.2 National Planning Guidance	5
2.3 Local Planning Guidance	6
3. Energy Efficiency Measures and Heating Infrastructure.	6
3.1 Passive Measures	6
3.2 Active Measures	6
3.3 Overheating and Cooling	6
3.4 District Heating Network (DHN)	7
3.5 Proposed Heating Infrastructure	7
4. Utilise Low and Zero Carbon (LZC) Technologies.	7
4.1 Appraisal of Renewable Technologies	7
5. Results.	9
5.1 SAP 2012	9
5.2 SAP 10	9
5.3 Site Wide Energy from Low and Zero Carbon (LZC) Energy S	ources 9
6. Sustainability.	10
6.1 Environmental Assessments.	10
6.2 Management.	10
6.3 Health and Wellbeing.	10
6.4 Energy.	10
6.5 Transport.	10
6.6 Water.	10
6.7 Materials.	10
6.8 Waste.	10
6.9 Land Use and Ecology	11
6.10 Pollution	11

7. Conclusion.	12
Appendix A: Sample SAP DER Worksheets.	13
Appendix B: BRUKL Document.	14
Appendix C: SAP 10 Calculation Worksheets.	15
Appendix D: Calculation of Energy from LZC Sources.	16
Appendix E: BREEAM UK New Construction 2018 Pre-Assessment Documents.	17

3

ENERGY AND SUSTAINABILITY DOCUMENT - REV. 5

Executive Summary.

This report describes the Energy Strategy and Sustainability Statement for the proposed Guild Living Epsom development, in Epsom.

Figure 1 Proposed Development. (Credit: Marchese Partners)

The development will comprise of the demolition of the existing hospital buildings, accommodation block and associated structures and redevelopment of the site to provide a new care community for older people arranged in two buildings, comprising 267 care residences, 10 care apartments and 28 care suites proving transitional care, together with ancillary communal and support services Use Class C2, 24 key worker units Use Class C3, children's nursery Use Class E, as well as associated back of house and service areas, car and cycle parking, altered vehicular and pedestrian access, landscaping, private amenity space and public open space.

Carbon Dioxide Emissions.

The Epsom and Ewell Borough Council (EEBC) Core Strategy 2007 recognises that all development which takes place in Epsom and Ewell must contribute to addressing climate change. As such, all domestic development should contribute to a sustainable future in Epsom and, all new developments are encouraged to make use of renewable energy.

In addition to the progressively demanding standards for CO_2 emissions set through Building Regulations Part L 2013, the Core Strategy 2007 encourages the use of LZC energy technologies to reduce the total carbon emissions from the development by 10% as part of the aim to reduce pollution and climate change.

In order to demonstrate compliance with Part L 2013, energy modelling has been carried out on the proposed development. Part L 2013 compliant baseline calculations were carried out to establish the regulated carbon dioxide emissions for the development. In order to achieve Guild Living Brand standards, the development will target a 35% reduction over Part L 2013 (using SAP 10 Carbon Factors); and the development will achieve BREEAM 'Very Good', with aspirations of BREEAM 'Excellent'.

These calculations include a number of the following passive and active energy efficiency measures.

The passive measures include the specification of high-performance building fabric including u-values and an air permeability that are significantly beyond the minimum requirements of the Building Regulations.

The active measures include:

- Insulated pipework to reduce circulation losses;
- Highly energy efficient heat recovery ventilation; and
- Low energy lighting.

Research into a possible connection to an existing District Heating Network (DHN) has been looked into via the District Heating Installation Map provided by The Association for Decentralised Energy and found that there are no nearby connections. However, some of the leisure and retail facilities are looking at the potential of connecting to the district heating network for the general hospital, this is being investigated further.

A number of renewable technologies were investigated with the view to be incorporated in the development. Following this investigation, it was decided that a photovoltaic array is the preferred strategy to meet compliance with The Core Strategy 2007 and is proposed for this development.

The assessment showed that a reduction in carbon emissions of 44% over a Part L 2013 compliant development using SAP 10 carbon factors can be achieved. In addition, 26% of the development's energy will come from LZC energy sources.

Sustainability.

Sustainability has been a key design consideration for this development from the onset of the project, and consideration of the impact of design proposals and measures on the sustainable credentials of the development has been made throughout the design development to date and will continue throughout the design and construction process.

Below is a selection of some of the measures that will be incorporated into the scheme:

- Project delivery stakeholders will meet to identify and define roles and responsibilities of each of the key phases of project delivery;
- The contractor will be selected with consideration of their ability to comply with the Considerate Constructors Scheme;
- An Energy Assessment has been carried out in line with the requirements of The Core Strategy 2007;
- Where external lighting is required, energy efficient luminaires will be specified, and they will be automatically controlled for the prevention of operation during daylight hours;
- Any external lighting will be designed to reduce night-time light pollution;
- The site benefits from being within 1 mile of Epsom Town Centre and contains cycle and mobility scooter storage;
- Water consumption will be reduced through the specification of efficient sanitary ware;
- Materials with a low environmental impact will be implemented where feasible;
- Recycled, sustainable and locally sourced materials will be used where possible;
- All timber and timber-based products will be legally harvested and traded; and
- A Resource Plan will be developed to minimise construction waste related to on-site construction and dedicated off-site manufacture / fabrication.

ENERGY AND SUSTAINABILITY DOCUMENT - REV. 5

1. Introduction.

The proposed Guild Living Epsom development is situated in the town of Epsom, Surrey. The development is adjacent to Epsom Hospital, with Epsom town centre to the North East.

The development will comprise of the demolition of the existing hospital buildings, accommodation block and associated structures and redevelopment of the site to provide a new care community for older people arranged in two buildings, comprising 267 care residences, 10 care apartments and 28 care suites proving transitional care, together with ancillary communal and support services Use Class C2, 24 key worker units Use Class C3, children's nursery Use Class E, as well as associated back of house and service areas, car and cycle parking, altered vehicular and pedestrian access, landscaping, private amenity space and public open space.

The site is highlighted in Figure 2.

Figure 2 Aerial view of the Proposed Development site. Credit: Google

This Energy and Sustainability Document has been prepared in support of the planning application for the proposed development of Guild Living Epsom, hereafter referred to as the Proposed Development.

The purpose of this document is to set out the energy strategy and overall sustainability proposals for the Proposed Development. This document provides a summary of the key policies that are applicable to the Proposed Development and an energy strategy commensurate with the current building regulations as well as regional and local planning policies.

HOARE LEA (H.

2. Policy Requirements & Building Regulations.

The policies and regulations that are required to be satisfied are summarised as follows.

2.1 The Building Regulations

Part L Conservation of Fuel and Power deals with energy efficiency requirements in the Building Regulations. New buildings will be assessed under Approved Document Part L1A (Domestic) and Part L2A (Non-Domestic) of the Building Regulations.

Part L1A 2013 of Building Regulations – New Domestic Elements

On a national level, Part L1A of The Building Regulations sets the energy efficiency requirements in new domestic buildings.

Under Building Regulations Approved Document Part L1A, compliance is achieved by demonstrating that the Dwelling Emission Rate (DER) does not exceed the Target Emission Rate (TER) and that the Dwelling Fabric Efficiency (DFEE) is not worse than the Target Fabric Efficiency (TFEE).

In addition, Part L1A also requires that the fabric elements and the fixed building services all meet minimum energy efficiency standards (Criterion 2), and reasonable provision for limiting solar gain through the building fabric (Criterion 3).

Part L2A 2013 of Building Regulations - New Non-Domestic Elements

On a national level, Part L2A of The Building Regulations sets the energy efficiency requirements in new non-domestic buildings.

Under Building Regulations Approved Document Part L2A: Conservation of Fuel and Power (2013 edition), compliance is achieved by demonstrating that the Building CO₂ Emission Rate (BER) is not worse than the Target CO₂ Emission Rate (TER).

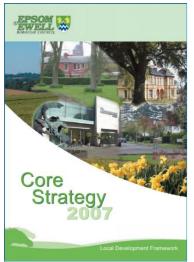
In addition, Part L2A also requires that the fabric elements and the fixed building services all meet minimum energy efficiency standards (Criterion 2), and reasonable provision for limiting solar gain through the building fabric (Criterion 3).

2.2 National Planning Guidance

The National Planning Policy Framework, February 2019

The National Planning Policy Framework (NPPF) was updated in February 2019. The NPPF sets out the Government's strategy on the delivery of sustainable development through the planning system. It provides a framework within which locally prepared plans for housing and other development can be produced.

Planning law requires that applications for planning permission be determined in accordance with the development plan, unless material considerations indicate otherwise. The NPPF must be considered in preparing the development plan and is a material consideration in planning decisions. Planning policies and decisions must also


reflect relevant international obligations and statutory requirements.

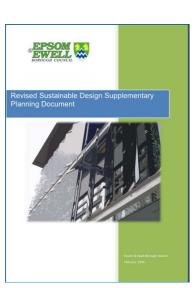
The purpose of the planning system is to contribute to the achievement of sustainable development. At a very high level, the objective of sustainable development can be summarised as meeting the needs of the present without compromising the ability of future generations to meet their own needs.

ENERGY AND SUSTAINABILITY DOCUMENT - REV. 5

The applicable Development Plan for the Proposed Development is The Epsom Core Strategy 2007. Please refer to the following sections for further details.

2.3 Local Planning Guidance

Epsom Core Strategy 2007


The Epsom Core Strategy 2007 is the overarching planning policy document, which forms part of a wider set of local planning policy documents known as the "Epsom and Ewell Borough Council (EEBC) Development Plan".

The Epsom Core Strategy has set out a vision and objectives for the development of Epsom up to 2022, and has been designed to target four broad aims:

- Conserving resources;
- Creating a quality environment and special places;
- Addressing community needs now and in future; and
- Encouraging a prosperous economy.

Policy CS6 states "Proposals for development should result in a sustainable environment and reduce, or have a neutral impact upon, pollution and climate

change. The council will expect proposals to demonstrate how sustainable construction and design can be incorporated to improve the energy efficiency of development – both new build and conversion."

Revised Sustainable Design Guide 2016

The Sustainable Design Guide 2016 is a supplementary planning document which provides detailed information on how planning policy will be implemented, specifically Core Strategy Policy CS6. By following this guidance document, prospective developers can help ensure that their development proposals are genuinely environmentally sustainable.

To demonstrate compliance with Core Strategy Policy CS6, all minor and major development proposals are required to be accompanied by a Sustainability Statement or appropriate BREEAM Assessment.

In order to comply with the Guild Living brand standard, the Retail, Nursery and Multi Residential areas have targeted to achieve BREEAM 'Very Good', with aspirations of 'Excellent'.

Please refer to Appendix E for a full review of the BREEAM Pre-Assessment.

3. Energy Efficiency Measures and Heating Infrastructure.

3.1 Passive Measures

In order to reduce the energy demand of the development, the fabric of the development will be improved significantly beyond the minimum requirements of Criterion 2 of Part L1A and Part L2A 2013. Table 1 shows the typical envelope performance characteristics that will be incorporated into the scheme design to limit the buildings' energy consumption.

Table 1 Element U-Values

	Element	Domestic	Non-Domestic	
	Floor U - Value (W/m²K)	0.13	0.15	
	Roof U - Value (W/m²K)	0.13	0.15	
Ex	ternal Walls U - Value (W/m²K)	0.15	0.18	
Walls	between heated spaces (W/m ² K)	Fully filled cavity with sealed edges	N/A	
হ	U-value (W/m²K)	1.4	1.40	
Glazing Glazed doors	Frame type	Metal	Metal	
Gla	G-value	0.35	0.35	
G	Fraction Glazed	0.80	0.90	
Air	permeability (m³/hm² (@ 50Pa)	3.00	3.00	
	Thermal Bridge Specification	Accredited psi values	Default	

3.2 Active Measures

Energy consumption will be further reduced by the incorporation of active energy efficiency measures in the design of the mechanical and electrical engineering systems. The following energy efficiency measures will be incorporated:

- Insulated pipework to reduce circulation losses;
- Highly energy efficient heat recovery ventilation; and
- Low energy lighting.

3.3 Overheating and Cooling

The Core Strategy 2007 considers planning for and the impacts of climate change. All development should be future proofed and able to recover from extreme weather events such as flooding, drought and heatwaves. Developments should incorporate thermal mass, shading devices and a night-time cooling strategy into building design in order to prevent overheating.

Below are the steps and proposals to demonstrate mitigation against overheating.

1. Reduce the amount of heat entering a building through orientation, shading, high albedo materials, fenestration, insulation and the provision of green infrastructure.

The amount of heat entering the building will be reduced by:

- a. Energy efficient facades with appropriate proportions of glazing;
- b. External shading provided by balconies; and
- c. A glazing shading coefficient carefully selected to minimise solar gain in the summer, but also to maximise solar gain in winter.

GUII D LIVING

SUSTAINABILITY

ENERGY AND SUSTAINABILITY DOCUMENT - REV. 5

- 3. Manage the heat within the building through exposed internal thermal mass and high ceilings.
 - a. Ceiling heights in the development have been maximised within the constraints of the overall building height and massing.
- 4. Passive Ventilation
 - a. Passive ventilation (openable windows) has been incorporated within the development. In addition, there will be a small amount of natural ventilation through infiltration
- 5. Mechanical Ventilation
 - a. There will be a continuous extract from the kitchens and bathrooms in all units.
- 6. Active Cooling Systems
 - a. No comfort cooling is proposed for the development.

3.4 District Heating Network (DHN)

Research into a possible connection to an existing District Heating Network (DHN) has been looked into via the District Heating Installation Map provided by The Association for Decentralised Energy and found that there are no nearby connections. However, some of the leisure and retail facilities are looking at the potential of connecting to the district heating network for the general hospital, this is being investigated further.

3.5 Proposed Heating Infrastructure

The heating infrastructure for the residential development will be via a direct electric approach. This will provide the heating and hot water loads.

For the non-residential areas, the assisted living suites will have fan coil units for the heating and cooling demand. The café and retail areas have heating and cooling provided by a VRF system, while the restaurant will have communal heating and cooling via an Air Source Heat Pump (ASHP) with MVHR units. The Domestic Hot Water (DHW) demand for the non-domestic spaces is all provided by the ASHP with an electric top-up.

4. Utilise Low and Zero Carbon (LZC) Technologies.

These measures are those which serve to reduce the overall emissions of the development through the inclusion of renewable technologies such as Ground Source Heat Pump (GSHP), Solar Photovoltaics array (PV panels), besides others.

This section addresses the requirements of Policy CS6 which encourages the use of renewable or low carbon energy technologies.

4.1 Appraisal of Renewable Technologies

A number of renewable technologies have been appraised in terms of technical and physical feasibility as potential renewable systems for use on the project.

4.1.1 Solar Photovoltaics

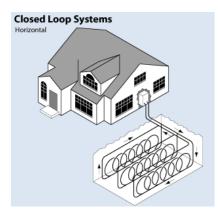
Solar photovoltaic (PV) cells generate electricity from the sun's energy. Solid PV panels can be either roof or façade mounted (although solar modules fitted on a south facing façade have only 75% the output of roof mounted modules).

Solar PV can be seen as an on-site zero carbon energy source as it will produce useable electrical energy without requiring any energy input. Although the output from the panels is unpredictable and weather dependent, the electrical energy produced by Solar PV panels could be used to provide additional carbon emission reductions and are compatible with the use of other energy

generating technologies. Once installed they are very low maintenance and will also have a low visual impact at street level. In addition, this development has suitable south facing roof space available.

Taking the above into account, solar PV is considered an appropriate technology for this development and will be investigated further.

4.1.2 Solar Water Heating Panels


Solar water heating systems use heat from the sun to heat domestic hot water. The system requires solar panels on the roof, ideally south facing, linked to hot water storage cylinders. For solar water panels to be effective the development should have a high hot water demand.

This development has suitable south facing roof space available and has a high hot water demand due to the nature of the development, which initially makes this technology suitable for this development. However, solar water panels are more suited to individual/ standalone dwellings as the hot water produced through the panels will feed directly into the hot water storage

for that particular dwelling. For a development like this, solar water panels would therefore not be suitable. The panels are higher maintenance than PV and they are highly dependent on the weather/season, arguably more so than photovoltaics, leading to unpredictability with the hot water load. In addition, the heat gained from the panels cannot be sold back to the grid and so if the hot water is not used once it has been produced it will eventually be wasted.

Due to the reasons highlighted above, solar water heating panels are therefore not proposed for this development.

ENERGY AND SUSTAINABILITY DOCUMENT - REV. 5

4.1.3 Ground Source Heat Pumps

Ground source heat pumps (GSHP) utilise either water extracted from an aquifer (open loop) or water circulated within underground pipework (closed loop) as the heat source in a refrigeration process. This enables them to produce hot water, typically at around 45°C, that can be used as means of space heating in buildings. Due to the relatively constant temperature of the ground at depth (typically 10-14°C in the UK) this produces heat more efficiently in winter than an air source heat pump, and usually with lower carbon emissions than a gas-fired boiler.

Open loop systems require the water extracted to be re-injected into the aquifer at another borehole on another part of the site. A licence from the Environment Agency (EA) is required for both abstraction and discharge

although these licences cannot be obtained until a test borehole has been constructed and the appropriate EA tests undertaken.

Since there is no cooling required for the development, there is an unbalanced heating and cooling demand, therefore this technology is not appropriate.

4.1.4 Biomass Boilers

A biomass boiler uses a natural fuel such as wood chips or wood pellets for combustion. Since it uses a natural resource that can be replanted it is considered as a renewable energy source subject to the distance the fuel is transported. The carbon dioxide emitted from burning biomass is balanced by that absorbed during the fuel's production. Biomass heating therefore approaches a carbon neutral process.

The primary disadvantage of a biomass boiler is that it would require a substantial amount of fuel storage for a development of this size, which would make for an inefficient use of space. Further to this, regular deliveries are required to ensure the boiler works as efficiently and continuously as possible and biomass exhaust gases would require significant treatment to avoid degrading local air quality. In addition, the nature of the fuel within the boiler would require regular cleaning which would increase the downtime of the boiler, whilst also effecting air quality through the emissions.

Due to the reasons highlighted above, biomass boilers are therefore not proposed for the development.

4.1.5 Wind Turbines

Wind turbines use the wind's lift forces to turn aerodynamic blades that turn a rotor thus generating electricity. There are three basic types to consider: horizontal axis (propeller type), vertical access (helical type) and building integrated (where the building design is adapted to suit the wind turbine).

Wind turbines have a significant visual impact and the roof space will be sensitive in townscape terms, which is likely to preclude wind turbines. They can create noise and vibration problems. Additionally, there is limited roof area across the site where clean air flows and good wind speeds can be realised which are vital to delivering a useful electrical output. Even if a

suitable location could be found, the output of a wind turbine and the consequential carbon dioxide emissions will be very limited when compared to the emissions of the whole development.

Due to the reasons highlighted above, wind turbines are therefore not proposed for the development.

4.1.6 Air Source Heat Pumps

Air source heat pumps absorb heat from the outside air, even if the temperature is as low as -15°C. The air from the outside heats a liquid refrigerant, which is then compressed to increase the temperature. This is then condensed back into a liquid and heat is released. The heat can then be used for heating and hot water systems.

The main benefits of ASHPs are that they can provide both heating and cooling as the heat pump can be operated in reverse, and they are suitable for centralised heat networks. They are easy to install (more so than GSHP) and require very little maintenance once installed. However, this solution would require a large amount of outdoor space to accommodate enough ASHP to provide heating and hot water. This would either be at roof level and impact the overall height or number of floor levels or in the landscaping and would be difficult to conceal. Due to the hydraulic restrictions on pipework runs it is likely that the ASHPs would need to be located in a number of different areas to achieve the required pipework runs. This would also increase the bulk and massing of the development, taking away

any space for a proposed PV Array.

The use of ASHPs will also impact on rights of light and outside space for tenants, whilst also being a source of noise.

Taking the above into account, ASHPs will only be considered for certain areas in the scheme, and is not considered an appropriate technology for the whole development.

To summarise, ASHPs will be considered for certain non-domestic spaces such as the restaurant, which will be investigated further. Solar Photovoltaics are considered a suitable technology for this development. Since the Core Strategy encourages LZC energy technologies to reduce the total carbon emissions from the development by 10%, and with other technologies inappropriate due to the reasons highlighted above, these are the only renewable technologies proposed.

After accounting for roof space required for heating and ventilation plant, we have identified space for 1138 sqm of PV panels (approximately 2200 sqm roof space on the taller eight storey roofs of building A and B). This will provide 227.6kWp for the residential units, assuming an efficiency of 0.2 kWp/sqm.

GUILD LIVING EPSOM

SUSTAINABILITY

ENERGY AND SUSTAINABILITY DOCUMENT - REV. 5

5. Results.

5.1 SAP 2012

With the inclusion of the contribution of ASHP and PV, the estimated reduction in regulated carbon dioxide emissions is approximately 6% below the Part L 2013 compliant baseline scheme for the domestic elements, 0% below the baseline scheme for the non-domestic elements and 4% below the baseline scheme for the site.

Please refer to Appendix A for the SAP DER Worksheets and Appendix B for the BRUKL Output Document.

5.2 SAP 10

It is becoming more widely recognised that energy derived from an electrical power source, will over time, provide a more robust carbon saving due to the decarbonisation of the grid supply. This trend is likely to continue as the carbon factor for electricity continues to reduce.

Grid electricity has significantly decarbonised since the last update of Part L in April 2014. The UK government announced that it will implement the closure of all coal-fired power stations by 2025, this is in line with the increase in renewable power generation.

2017 saw times where low-carbon generation, such as wind, solar and nuclear, generated more energy than coal and gas combined; showing very real progress towards a low-carbon future. In April 2018, Britain went for more than 3 days without the need for coal power and in May 2019 passed a week without the need for this fossil fuel; the first time since 1882.

It is clear that the grid in 2019 is much cleaner than in past years, and so it is therefore a hindrance that our new buildings still utilise the emissions rates of 2014 that give a false position of gas being greener than electricity.

5.2.1 What is a Carbon Factor?

A carbon emission factor (carbon factor) is the average emission rate of a given greenhouse gas for a given source, relative to units of activity.

5.2.2 SAP 10 Carbon Factors

In July 2018 the Government published updated carbon emission factors (SAP 10), demonstrating how the grid is decarbonising.

The table below details the carbon factors for electricity under SAP 2012, SAP 10, Actual (last 3 months) and Actual (last year).

They reflect the general decarbonisation of the grid.

Table 2 Electricity Factors

	Emissions kg CO _{2e} per kWh							
	SAP 2012 (2014)	SAP 10 (July 2018)	Actual (last 3 months)	Actual Last Year (2020)				
Electricity	0.519 ¹	0.1694						

^{1:} SAP 2012: https://www.bregroup.com/sap/standard-assessment-procedure-sap-2012/

This clearly demonstrates that the use of SAP 10 carbon factors is appropriate for current day energy modelling.

9

5.2.3 SAP 10 Results

The overall predicted reduction in CO_2 emissions from the baseline development model using SAP 10 carbon factors is approximately 54% for the domestic elements and 0% for the non-domestic elements, which represents a total site wide reduction of 44% and an annual saving of approximately 254 tonnes of CO_2 (see Figure 3 below). See Appendix C for the SAP 10 calculation worksheets.

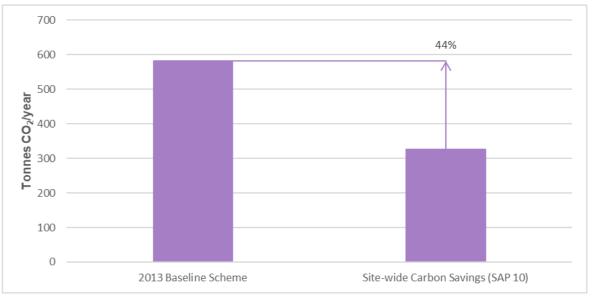


Figure 3 Proposed Development Regulated Carbon Dioxide Emissions (SAP 10 Carbon Factors)

5.3 Site Wide Energy from Low and Zero Carbon (LZC) Energy Sources

The Core Strategy details that The South East Plan encourages larger housing and commercial schemes to provide at least 10% of the development's energy from renewable sources. As a result, this development has implemented ASHP and PV panels throughout the site. Calculations have confirmed that 26% of the development's energy will come from LZC energy sources.

Appendix D shows the calculation of energy from LZC energy sources.

^{2:} SAP 10 (please note this is just the carbon factors not the SAP 10 methodology itself): https://www.bregroup.com/sap/sap10/

 $^{3:} Britain's \ Electricity \ Demand: \ https://electricinsights.co.uk/\#/dashboard?period=3-months\&start=2020-11-03\&\&_k=vlbz4q$

 $^{4.\} Britain's\ Electricity\ Demand:\ https://electricinsights.co.uk/\#/dashboard?period=1-year\&start=2020-01-01\&\&_k=d0sv9g$

ENERGY AND SUSTAINABILITY DOCUMENT - REV. 5

6. Sustainability.

Sustainability has been a key design consideration for this development from the onset of the project and consideration of the impact of design proposals and measures on the sustainable credentials of the development has been made throughout the design development to date and will continue throughout the design and construction process.

The following is a summary of the key sustainability issues that form the overall strategy for the project.

6.1 Environmental Assessments.

Showing a demonstration of the commitment to sustainable design and construction, the Commercial Areas will be designed to achieve a BREEAM New Construction 2018 'Very Good' rating.

The BREEAM UK New Construction scheme is a performance-based assessment method and certification scheme for new buildings.

The primary aim of BREEAM UK New Construction is to mitigate the life cycle impacts of new buildings on the environment in a robust and cost-effective manner. This is achieved through integration and use of the scheme by clients and their project teams at key stages in the design and construction process.

The BREEAM 2018 Pre-Assessment Strategy is included in Appendix E.

6.2 Management.

In order to ensure sustainable management practices are upheld throughout the project programme, efficient management practices will be encouraged in order to ensure sustainability is considered throughout the key stages of design, procurement and initial occupation, from the initial project brief stage to the appropriate provision of aftercare.

Aspects involving integrated design process and robust stakeholder engagement, utilising life cycle costing in order to improve design, and adopting environmentally social and responsible site practices will be made. The team will also be required to ensure properly planned handover and commissioning process are in place which reflect the needs of the building occupants.

6.3 Health and Wellbeing.

The development will be designed in order to maximise the health, wellbeing and safety of the building users. The internal environment will ensure natural daylight is maximised appropriately, and the use of artificial lighting is reduced as far as possible. Internal air quality considerations will also be adopted, ensuring products emitting low VOC emissions are selected throughout the building.

All areas of the buildings' acoustic performance, including plant spaces will be attenuated in order to meet the appropriate standards for this type of building.

Finally, the design will ensure an appropriate level of security to the building users, building and site is implemented.

6.4 Energy.

Measures will be implemented throughout the building design which focus on reduction of carbon emissions and support efficient management throughout the operational phase of the building's life.

A Direct Electric approach is the proposed strategy for the heating and hot water for the development.

An Energy Strategy has been devised in line with The Core Strategy 2007 and has confirmed a direct electric approach has been proposed for the residential areas providing the heating and hot water loads. The non-residential areas (including the assisted living suites) will have fan coil units for the heating and cooling demand. The café and retail areas have heating and cooling provided by a VRF system, while the restaurant will have communal heating and cooling via an Air Source Heat Pump (ASHP) with MVHR units. The Domestic Hot Water (DHW) demand for the non-domestic spaces is all provided by the ASHP with an electric top-up.

Please refer to Sections 3-5 of this report for further details on energy performance.

Further energy efficiency measures will look at ensuring the scheme installs energy sub-metering to facilitate the monitoring of operational energy consumption; specification of energy efficient light fittings for external areas; encourage the specification of energy efficient transportation systems; finally where feasible, encourage installation of energy efficient equipment to ensure optimum performance and energy savings in operation.

6.5 Transport.

A Transport Assessment and Travel Plan have been completed for the scheme assessing the overall impact the Proposed Development and surrounding environment and community.

The development and the travel documents will ensure key principles such as raising awareness, understanding and accessibility of travel options and local amenities, allowing for affordable access to services to the building users are made and promoted throughout the building life cycle. The travel documents have detailed sustainable modes of transport, as well as have worked towards reducing congestion and improving safety on the site and surrounding roads.

The scheme will also look at the inclusion of electric car recharging stations within the site, as well as promote reliance on active travel and work with local authorities to ensure sustainable transport measures, reducing building users' carbon footprint.

The site is located on the grounds of Epsom General Hospital, 1 mile south from Epsom Town Centre. The site provides access to numerous bus stops within 1km of the site, providing access to St Helier Hospital, Morden, Guildford, West Croydon, Little Brookham, Langley Vale, Effingham, Crawley and Leatherhead.

Epsom train station also ensures ongoing access into central London (Bridge, Waterloo, Victoria), Dorking and Guildford.

New and improved secure, covered spaces for bicycles and scooter storage will be installed throughout the site, for the building users and on-going visitors.

6.6 Water.

Sustainable water practices will be incorporated throughout the scheme ensuring the specification of water efficient equipment as well as minimising losses throughout leakage.

The design will ensure the effective management and monitoring of water consumption is made in order to reduce the consumption of potable water. Additionally, leak detection systems and flow control devices will be installed in order to minimise wastage due to water leaks.

All non-potable water usage e.g. Landscaping irrigation will be reduced as far as feasibly possible.

6.7 Materials.

The design and specification of the building will ensure the selection of products with low environmental impact (including embodied carbon) throughout the life cycle. Recycled, sustainable and locally sourced materials will be used where possible.

Initial studies will be taken assessing the durability and resilience of the materials selected, and ensuring appropriate mitigation measures are in place in order to reduce the need to repair and replace these. Additionally, material efficiency measures will be established from the onset of the project programme encouraging the design team to avoid unnecessary materials use arising from over specification without compromising structural stability, durability or the service life of the building.

6.8 Waste.

Waste will be reduced and minimised as far as feasibly possible throughout demolition, construction and lifetime of the building. The final design of the building will look at accommodating and ensuring appropriate waste management practices are adopted and continued by the building user throughout operation.

SUSTAINABILITY ENERGY AND SUSTAINABILITY DOCUMENT - REV. 5

Aspects including ensuring best practice waste management practices are adopted by the Principal Contractor in order to minimise waste going to landfill. The building will ensure dedicated space is provided in order to accommodate and house operational waste generated. Additionally, the design team will undertake a Climate Change Adaptation Appraisal assessing the potential weather hazards and patterns which could occur within the environment throughout the buildings life cycle, and incorporate mitigation measures in order to minimise the future need of carrying out works.

6.9 Land Use and Ecology

The 'Proposed Development' will be situated on the existing grounds of Epsom General Hospital. The reuse of this land will reduce the environmental impact which would have incurred from using a Greenfield site and this method ensures an environmental health hazards e.g. land contamination are addressed. Additional land benefits which can be drawn upon from this scheme is the lower cost to maintain surrounding infrastructure. The development will be situated on a previously developed site, already accommodating services and highways to access.

The scheme will look at ensuring the existing ecological value of the site is maintained, including surrounding areas, and the opportunities for ecological protection and enhancement are identified and incorporated. All negative ecological impacts resulting from the project will be minimised within the zone of influence. The development will draw upon the advice of local environmental records on improving local biodiversity and incorporating aspects such as wildlife corridors, native floral or plant specifies, thus improving the health, wellbeing of the building occupants, through the provision of recreational space and an increased connection between people and the natural environment (biophilia).

These improvements on Brownfield site, as oppose to Greenfield site, offer greater environmental and social benefits for the surrounding community, as well as long term ecological benefits for the wildlife and biodiversity of the area.

The Principal Contractor will be required to ensure suitable protection measures are in place throughout demolition and construction in order to ensure no negative impact incurs throughout the project programme. Furthermore, the design team will be required to ensure minimal risk and maximised opportunities are identified and implemented within the final design ensuring an improvement in the ecological value of the site.

The developer will ensure a long-term ecological management and maintenance plan is established, informing the facilities management team on the management and maintenance procedures needed to preserve the ecology and landscaping.

6.10 Pollution

The site is located in Flood Zone 1. Figure 4 below shows the Environment Agency flood map, which contains more information on flood zones and flood risk assessments.

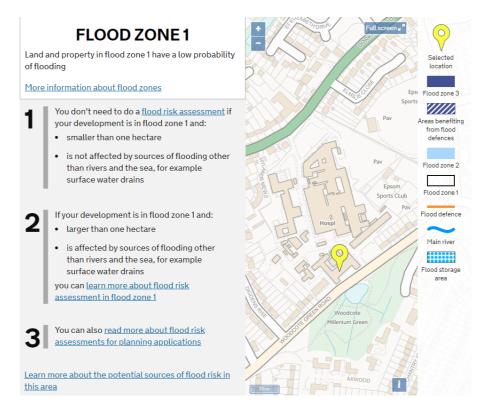


Figure 4 Environment Agency Flood Mapping

The materials used for the landscaping will be selected with consideration of reducing the flood risk. Such materials include permeable paving and other porous finishes. The types of materials and finishes will help promote infiltration into the ground.

Any external lighting provided will be designed with the consideration of reducing night-time light pollution.

7. Conclusion.

An energy assessment has been carried out to show compliance with of The Core Strategy 2007. The assessment showed that a reduction in carbon emissions of 44% over a Part L 2013 compliant development can be achieved. This reduction in carbon dioxide emissions will be achieved through the incorporation of passive and active energy efficiency measures and renewable technologies.

A range of sustainable measures, such as those highlighted below have been incorporated into this development.

- Project delivery stakeholders will meet to identify and define roles and responsibilities of each of the key phases of project delivery;
- The contractor will be selected with consideration of their ability to comply with the Considerate Constructors Scheme:
- An energy assessment has been carried out in line with the requirements of The Core Strategy 2007;
- Where external lighting is required, energy efficient luminaires will be specified, and they will be automatically controlled for the prevention of operation during daylight hours;
- Any external lighting will be designed to reduce night-time light pollution;
- The site benefits from close proximity to Epsom Town Centre and covered cycle and mobile scooter storage;
- Water consumption will be reduced through the specification of efficient sanitary ware;
- Materials with a low environmental impact will be implemented where feasible;
- Recycled, sustainable and locally sourced materials will be used where possible;
- All timber and timber-based products will be legally harvested and traded; and
- A resource plan will be developed to minimise construction waste related to on-site construction and dedicated off-site manufacture / fabrication.

SUSTAINABILITY ENERGY AND SUSTAINABILITY DOCUMENT - REV. 5 13

Appendix A: Sample SAP DER Worksheets.

Property Reference	Type 01				Issued on Date	12/01/2021		
Assessment	V02 Be Green			Prop Type Ref B0 2BS-5				
Reference								
Property								
SAP Rating		78 C	DER	28.87	TER	27.36		
Environmental		80 C	% DER <ter< th=""><th></th><th colspan="4">-5.53</th></ter<>		-5.53			
CO ₂ Emissions (t/ye	ear)	1.58	DFEE	54.84	TFEE	55.35		
General Requireme	ents Compliance	Fail	% DFEE <tfe< th=""><th>E</th><th colspan="4">0.92</th></tfe<>	E	0.92			
Assessor Details	Ms. Madeleine Leonard, MadeleineLeonard@hoarele	54600,	Assessor ID	T456-0001				
Client								

REGULATIONS COMPLIANCE REPORT - Approved Document L1A, 2013 Edition, England

REGULATIONS COMPLIANCE REPORT - Approve		
DWELLING AS DESIGNED		
Ground-floor flat, total floor area 78	m²	
This report covers items included within it is not a complete report of regulations.	ons compliance.	
la TER and DER Fuel for main heating: Electricity Fuel factor: 1.55 (electricity) Target Carbon Dioxide Emission Rate (TE Dwelling Carbon Dioxide Emission Rate (Excess emissions = 1.51 kgCOUl/m² (5.5%) 1b TFEE and DFEE	R) 27.36 kgCO□/m² (DER) 28.87 kgCO□/m²Fail	
Target Fabric Energy Efficiency (TFEE) 5 Dwelling Fabric Energy Efficiency (DFEE	E)54.8 kWh/m²/yrOK	
2 Fabric U-values Element Average External wall 0.15 (max. 0.30) Party wall 0.00 (max. 0.20) Floor 0.13 (max. 0.25) Roof (no roof) Openings 1.40 (max. 2.00)	Highest 0.15 (max. 0.70) OK - OK 0.13 (max. 0.70) OK 1.40 (max. 3.30) OK	
2a Thermal bridging Thermal bridging calculated from linear	thermal transmittances for each junction	
3 Air permeability Air permeability at 50 pascals:	3.00 (design value) 10.0	ok
4 Heating efficiency Main heating system: Underfloor heating in thin screed (star	Electric underfloor heating - Electric	
Secondary heating system:	None	
S Cylinder insulation Hot water storage Permitted by DBSCG 1.85		
5 Cylinder insulation Hot water storage Permitted by DBSCG 1.85 Primary pipework insulated:	Measured cylinder loss: 1.18 kWh/day OK	ok
5 Cylinder insulation Hot water storage Permitted by DBSCG 1.85 Primary pipework insulated: 6 Controls	Measured cylinder loss: 1.18 kWh/day OK No primary pipework	
5 Cylinder insulation Hot water storage Permitted by DBSCG 1.85 Primary pipework insulated: 6 Controls Space heating controls: Hot water controls: 7 Low energy lights Percentage of fixed lights with low-ene Minimum	Measured cylinder loss: 1.18 kWh/day OK No primary pipework Time and temperature zone control Cylinderstat ergy fittings:100%	OK OK
5 Cylinder insulation Hot water storage Permitted by DBSCG 1.85 Primary pipework insulated: 6 Controls Space heating controls: Hot water controls: 7 Low energy lights Percentage of fixed lights with low-ene Minimum 8 Mechanical ventilation Continuous supply and extract system Specific fan power:	Measured cylinder loss: 1.18 kWh/day OK No primary pipework Time and temperature zone control Cylinderstat ergy fittings:100% 75%	OK
5 Cylinder insulation Hot water storage Permitted by DBSCG 1.85 Primary pipework insulated: 6 Controls Space heating controls: Hot water controls: 7 Low energy lights Percentage of fixed lights with low-ene Minimum 8 Mechanical ventilation Continuous supply and extract system Specific fan power: Maximum MVHR efficiency: Minimum:	Measured cylinder loss: 1.18 kWh/day OK No primary pipework Time and temperature zone control Cylinderstat ergy fittings:100% 75% 0.61 1.5 88% 70%	OK OK
5 Cylinder insulation Hot water storage Permitted by DBSCG 1.85 Primary pipework insulated: 6 Controls Space heating controls: Hot water controls: 7 Low energy lights Percentage of fixed lights with low-ene Minimum 8 Mechanical ventilation Continuous supply and extract system Specific fan power: Maximum MVHR efficiency: Minimum: 9 Summertime temperature Overheating risk (Thames Valley): Based on: Overshading: Windows facing North East: Windows facing South East: Air change rate:	Measured cylinder loss: 1.18 kWh/day OK No primary pipework Time and temperature zone control Cylinderstat ergy fittings:100% 75% 0.61 1.5 88% 70%	OK OK
5 Cylinder insulation Hot water storage Permitted by DBSCG 1.85 Primary pipework insulated: 6 Controls Space heating controls: 7 Low energy lights Percentage of fixed lights with low-ene Minimum 8 Mechanical ventilation Continuous supply and extract system Specific fan power: Maximum MVHR efficiency: Minimum: 9 Summertime temperature Overheating risk (Thames Valley): Based on: Overshading: Windows facing North East: Windows facing South East: Air change rate: Blinds/curtains:	Measured cylinder loss: 1.18 kWh/day OK No primary pipework Time and temperature zone control Cylinderstat ergy fittings:100% 75% 0.61 1.5 88% 70% Slight Very little 7.80 m², No overhang 12.28 m², Overhang width less than twice window,	OK OK OK OK OK OK OK OK OK OK

CALCULATI	ON OF D	WELLING	G EMISSI	ONS FOR	REGULAT	IONS CO	OMPLIAN	ICE 09	Jan 2014				
AP 2012 WORKSH	DWELLING E	MISSIONS FO	OR REGULATION	ONS COMPLIAN	NCE 09 3	Jan 2014							
Overall dwel								Area	Stor	rev height		Volume	
cound floor otal floor are relling volume		a)+(1b)+(1c	c) + (1d) + (1e))(1n)	,	77.9600		(m2) 77.9600		(m) 3.2000		(m3) 249.4720 249.4720	(4)
Ventilation	rate												
					main heating	s	econdary heating		other	tota		3 per hour	(6-)
mber of chimm mber of open mber of inter mber of passi mber of fluel	flues rmittent fa ive vents				0	+	0	+	0 = 0 =		0 * 40 = 0 * 20 = 0 * 10 = 0 * 10 = 0 * 40 =	0.0000 0.0000 0.0000 0.0000	(6b) (7a) (7b)
filtration du essure test asured/design filtration ra	n AP50 ate		and fans	= (6a)+(6b))+(7a)+(7b)+	(7c) =					Air change / (5) =	0.0000 Yes 3.0000 0.1500	(18)
mber of sides elter factor filtration ra			de shelter :	factor					(20) = 1	- [0.075 x 21) = (18) x		0.8500 0.1275	
nd speed nd factor	Jan 5.1000 1.2750	Feb 5.0000 1.2500	Mar 4.9000 1.2250	Apr 4.4000 1.1000	May 4.3000 1.0750	Jun 3.8000 0.9500	Jul 3.8000 0.9500	Aug 3.7000 0.9250	Sep 4.0000 1.0000	Oct 4.3000 1.0750	Nov 4.5000 1.1250	Dec 4.7000 1.1750	
j infilt rate	0.1626	0.1594	0.1562	0.1403	0.1371	0.1211	0.1211	0.1179		0.1371	0.1434	0.1498	
alanced mecha mechanical v balanced wit	ventilation	:			for in-use fa	actor (fro	m Table 4h)	=				0.5000 74.8000	
fective ac	0.2886	0.2854	0.2822	0.2663	0.2631	0.2471	0.2471	0.2439	0.2535	0.2631	0.2694	0.2758	
Heat losses	and heat 1	oss paramet	 cer	Gross m2	Openings m2	Ne	tArea m2	U-value W/m2K	Ах		-value kJ/m2K	A x K kJ/K	
ndow 1.4 (Uw bund floor ternal Wall 1 tal net area bric heat los Corridor rty Wall	l of externa		Aum(A, m2)	60.2500	20.0800	77 40 138	.0800 .9600 .1700 .2100	1.3258 0.1300 0.1500 30) + (32) 0.0000 0.0000	26.623 10.134 6.023	12 18 55 15	CO / INZIC	KO/II	(27) (28a) (29a) (31) (33) (32) (32)
ermal mass pa ermal bridges tal fabric he	s (Sum(L x)						+ (36) =	251.6500 14.4462 57.2277	(35) (36)
ntilation hea	at loss cal Jan 23.7561	culated mor Feb 23.4937	nthly (38)m Mar 23.2313	= 0.33 x (2 Apr 21.9192	25)m x (5) May 21.6568	Jun 20.3448	Jul 20.3448	Aug 20.0823	Sep 20.8696	Oct 21.6568	Nov 22.1816	Dec 22.7065	(38)
at transfer of erage = Sum(3	80.9838	80.7214	80.4590	79.1469	78.8845	77.5725	77.5725	77.3101	78.0973	78.8845	79.4094	79.9342 79.0813	(39)
P P (average)	Jan 1.0388	Feb 1.0354	Mar 1.0321	Apr 1.0152	May 1.0119	Jun 0.9950	Jul 0.9950	Aug 0.9917	Sep 1.0018	Oct 1.0119	Nov 1.0186	Dec 1.0253 1.0144	
ys in month	31	28	31	30	31	30	31	31	30	31	30	31	(41)
Water heatin			s (kWh/year)									
sumed occupar erage daily h	ncy											2.4230 96.5753	
ily hot water	Jan r use	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
nergy conte nergy content stribution lo	157.5403 (annual)	102.3699 137.7857 = 0.15 x (4	98.5069 142.1825 15)m	94.6438 123.9582	90.7808 118.9408	86.9178 102.6369	86.9178 95.1082	90.7808 109.1380	94.6438 110.4415	98.5069 128.7089 Total = St	102.3699 140.4958 um(45)m =	106.2329 152.5694 1519.5062	(45)
ater storage 1	23.6310	20.6679	21.3274	18.5937	17.8411	15.3955	14.2662	16.3707	16.5662	19.3063	21.0744	22.8854	(46)

CALCULAT	TON OF I	DWELLIN	G EMISSI	ONS FOR	R REGULA	TIONS CO	OMPLIAN	ICE 09	Jan 2014	,			
Store volume a) If manufac Temperature Enter (49) or Total storage	factor from (54) in (5	m Table 2b	actor is kn	own (kWh/c	lay):							145.0000 1.1800 0.6000 0.7080	(48) (49)
If cylinder co	21.9480	19.8240	21.9480	21.2400	21.9480	21.2400	21.9480	21.9480	21.2400	21.9480	21.2400	21.9480	(56)
Primary loss	21.9480 0.0000	19.8240	21.9480	21.2400	21.9480	21.2400	21.9480	21.9480	21.2400	21.9480	21.2400	21.9480	
Total heat red Solar input		water heati 157.6097 0.0000		ed for each 145.1982 0.0000	month 140.8888 0.0000	123.8769	117.0562 0.0000	131.0860	0.0000	150.6569	161.7358	174.5174	(63)
Output from w		157 6007	164 1305	145.1982	140 0000	123.8769	117.0562			months) = S		0.0000	
Heat gains fro		157.6097		145.1982	140.8888	123.8769	117.0562			150.6569 h/year) = S		174.5174 1777.9262	
nede gains ii	69.9405	61.6730	64.8341	58.2081	57.1062	51.1188	49.1819	53.8468	53.7138	60.3541	63.7069	68.2877	(65)
5. Internal ga	ains (see T	able 5 and	5a)										
Metabolic gair	ns (Table 5), Watts							0	0-1		D	
(66)m		121.1507			May 121.1507		Jul 121.1507	Aug 121.1507	Sep 121.1507	Oct 121.1507	Nov 121.1507	Dec 121.1507	(66)
Lighting gains Appliances gas	19.1785	17.0342	13.8531	10.4877	7.8397	6.6186	7.1516	9.2959	12.4770	15.8424	18.4904	19.7115	(67)
Cooking gains	215.1242	217.3565	211.7311	199.7554	184.6382	170.4301	160.9383	158.7060	164.3313	176.3071	191.4243	205.6323	(68)
Pumps, fans	35.1151 0.0000	35.1151 0.0000	35.1151 0.0000	35.1151 0.0000	35.1151	35.1151 0.0000	35.1151 0.0000	35.1151 0.0000	35.1151 0.0000	35.1151 0.0000	35.1151 0.0000	35.1151 0.0000	
Losses e.g. ev	aporation	(negative v	ralues) (Tab		-96.9206		-96.9206	-96.9206	-96.9206	-96.9206	-96.9206	-96.9206	(71)
Water heating		le 5)		80.8446	76.7557	70.9983	66.1047	72.3747	74.6025	81.1211	88.4817	91.7846	
Total internal	l gains 387.6540	385.5111	372.0720	350.4329	328.5787	307.3922	293.5398	299.7218	310.7560	332.6158	357.7417	376.4736	(73)
6. Solar gains													
[Jan]				rea	Solar flux		g		FF	Acce		Gains	
				m2		or '		Specific or Tab	data le 6c	fact Table		W	
Northeast			7.8	000	11.2829		0.3500	0	.8000	0.77	00	17.0769	
Southeast			12.2		11.2829 36.7938				.8000	0.77		87.6728	(77)
Southeast	104.7496		12.2	356.0297		428.9220			.8000		00		(83)
Southeast Solar gains Total gains Total gains	104.7496 492.4036	184.0996 569.6107 ture (heati	266.9596 639.0317	356.0297 706.4625	421.8333 750.4121	428.9220 736.3142	409.3071 702.8469	358.6645 658.3864	.8000 297.5610	0.77	126.4989	87.6728 88.9754	(83)
Southeast 	104.7496 492.4036 mal tempera	184.0996 569.6107 ture (heati	266.9596 639.0317 .ng season) in the livi	356.0297 706.4625 	421.8333 750.4121 mm Table 9, 5 Table 9a)	428.9220 736.3142 Th1 (C)	409.3071 702.8469	358.6645 658.3864	.8000 297.5610 608.3170	0.77 207.5316 540.1474	126.4989 484.2405	87.6728 88.9754 465.4490 21.0000	(83) (84)
Solar gains Total gains 7. Mean intern Temperature di Utilisation fa	104.7496 492.4036 all tempera uring heati actor for g Jan 67.2927 5.4862	184.0996 569.6107 ture (heati	266.9596 639.0317	356.0297 706.4625 ng area fro nil,m (see Apr 68.8545	421.8333 750.4121 mm Table 9, 5 Table 9a)	428.9220 736.3142	409.3071 702.8469	358.6645 658.3864	.8000 297.5610	0.77	126.4989	87.6728 88.9754 465.4490	(83) (84)
Solar gains Total gains 7. Mean intern Temperature di Utilisation fa	104.7496 492.4036 all tempera uring heati actor for g Jan 67.2927 5.4862	184.0996 569.6107 	266.9596 639.0317 	356.0297 706.4625 ng area fro nil,m (see Apr 68.8545	421.8333 750.4121 mm Table 9, 5 Table 9a) May 69.0835	428.9220 736.3142 Ph1 (C) Jun 70.2520	409.3071 702.8469 Jul 70.2520	358.6645 658.3864 	297.5610 608.3170 Sep 69.7799	0.77 207.5316 540.1474 Oct 69.0835	126.4989 484.2405 Nov 68.6269	87.6728 88.9754 465.4490 21.0000 Dec 68.1763	(83) (84)
Solar gains Total gains Total gains 7. Mean interr Temperature du Utilisation fa tau alpha util living an	104.7496 492.4036 	184.0996 569.6107 	12.2 266.9596 639.0317 in the livi ving area, Mar 67.7316 5.5154	356.0297 706.4625 ng area frc nil,m (see Apr 68.8545 5.5903	421.8333 750.4121 m Table 9, Table 9a) May 69.0835 5.6056 0.8388 20.8555	428.9220 736.3142 Th1 (C) Jun 70.2520 5.6835	409.3071 702.8469 Jul 70.2520 5.6835	358.6645 658.3864 Aug 70.4905 5.6994	297.5610 608.3170 Sep 69.7799 5.6520	0.77 207.5316 540.1474 Oct 69.0835 5.6056 0.9650 20.6757	126.4989 484.2405 Nov 68.6269 5.5751 0.9943 20.3783	87.6728 88.9754 465.4490 21.0000 Dec 68.1763 5.5451 0.9982 20.1433	(83) (84) (85)
Southeast Solar gains Total gains Total gains The man interreceive the solution of the solutio	104.7496 492.4036 	184.0996 569.6107 	12.2 266.9596 639.0317 in the livi ving area, Mar 67.7316 5.5154 0.9833 20.4564	356.0297 706.4625 ng area fro nil,m (see Apr 68.8545 5.5903 0.9447 20.6839	421.8333 750.4121 m Table 9, Table 9a) May 69.0835 5.6056 0.8388 20.8555	428.9220 736.3142 Fh1 (C) Jun 70.2520 5.6835 0.6491 20.9350	409.3071 702.8469 Jul 70.2520 5.6835 0.4815 20.9495	358.6645 658.3864 Aug 70.4905 5.6994 0.5326 20.9477	Sep 69.7799 5.6520 0.7938 20.9002 20.0819 0.7195 19.9716	0.77 207.5316 540.1474 Oct 69.0835 5.6056 0.9650 20.6757 20.0735 0.9491 19.6856	Nov 68.6269 5.5751 0.9943 20.3783 20.0679 0.9921 19.2556	87.6728 88.9754 465.4490 21.0000 Dec 68.1763 5.5451 0.9982 20.1433 20.0623 0.9976 18.9081	(83) (84) (85) (86) (87) (88) (89) (90)
Southeast	104.7496 492.4036 all tempera all tempera all tempera 3 an 67.2927 5.4862 rea 0.9975 20.1605 20.0511 nouse 0.9967 18.9242 reation 19.5360	184.0996 569.6107 	12.2 266.9596 639.0317	356.0297 706.4625 ng area fr nil,m (see Apr 68.8545 5.5903 0.9447 20.6839 20.0707	421.8333 750.4121 mm Table 9, 17able 9a) May 69.0835 5.6056 0.8388 20.8555 20.0735	428.9220 736.3142 Th1 (C) Jun 70.2520 5.6835 0.6491 20.9350 20.0875 0.5670	Jul 702.8469 Jul 70.2520 5.6835 0.4815 20.9495 20.0875 0.3839	358.6645 658.3864 Aug 70.4905 5.6994 0.5326 20.9477 20.0903 0.4312	Sep 69.7799 5.6520 0.7938 20.9002 20.0819 0.7195 19.9716	0.77 207.5316 540.1474 Oct 69.0835 5.6056 0.9650 20.6757 20.0735 0.9491 19.6856 Living are	Nov 68.6269 5.5751 0.9943 20.3783 20.0679 0.9921 19.2556	87.6728 88.9754 465.4490 21.0000 Dec 68.1763 5.5451 0.9982 20.1433 20.0623 0.9976 18.9081 0.4949 19.5194	(83) (84) (85) (86) (87) (88) (89) (90) (91) (92)
Solar gains Total gains Total gains 7. Mean interr Temperature dutilisation fatual gaipha util living and MIT Th 2 util rest of 1 MIT 2 Living area for the solution of the s	104.7496 492.4036	184.0996 569.6107 	266.9596 639.0317	356.0297 706.4625 ng area fromil,m (see Apr 68.8545 5.5903 0.9447 20.6839 20.0707 0.9257 19.6889	421.8333 750.4121 mm Table 9, 7 Table 9a) May 69.0835 5.6056 0.8388 20.8555 20.0735 0.7897 19.9107 20.3783	428.9220 736.3142 Th1 (C) Jun 70.2520 5.6835 0.6491 20.9350 20.0875 0.5670 20.0063	Jul 702.520 5.6835 0.4815 20.9495 20.0875 0.3839 20.0164	358.6645 658.3864 Aug 70.4905 5.6994 0.5326 20.9477 20.0903 0.4312 20.0186	Sep 69,7799 5.6520 0.7938 20.9002 20.0819 0.7195 19.9716 fLA =	0.77 207.5316 540.1474 Oct 69.0835 5.6056 0.9650 20.6757 20.0735 0.9491 19.6856 Living are 20.1756	Nov 68.6269 5.5751 0.9943 20.3783 20.0679 0.9921 19.2556 a / (4) = 19.8112	87.6728 88.9754 465.4490 21.0000 Dec 68.1763 5.5451 0.9982 20.1433 20.0623 0.9976 18.9081 0.4949 19.5194 0.0000	(83) (84) (85) (86) (87) (88) (90) (91) (92)
Solar gains Total gains Total gains Total gains Total gains Themperature dustilisation for the second secon	104.7496 492.4036 492.4036 al tempera al tempera arring heati actor for g Jan 67.2927 5.4862 rea 0.9975 20.1605 20.0511 nouse 0.9967 18.9242 reaction 19.5360 dijustment 19.5360	184.0996 569.6107 ture (heati	266.9596 639.0317 Ing season) In the livi ving area, Mar 67.7316 5.5154 0.9833 20.4564 20.0567 0.9776 19.3576 19.9014	356.0297 706.4625 Ing area from film (see Apr 68.8545 5.5903 0.9447 20.6839 20.0707 0.9257 19.6889 20.1813 20.1813	421.8333 750.4121 mm Table 9, 7 Table 9a) May 69.0835 5.6056 0.8388 20.8555 20.0735 0.7897 19.9107 20.3783 20.3783	428.9220 736.3142 Th1 (C) Jun 70.2520 5.6835 0.6491 20.9350 20.0875 0.5670 20.0063 20.4659	Jul 70.2520 5.6835 0.4815 20.9495 20.0875 0.3839 20.0164 20.4782	Aug 70.4905 5.6994 0.5326 20.9477 20.0903 0.4312 20.0186 20.4784	Sep 69.7799 5.6520 0.7938 20.9002 20.0819 0.7195 19.9716 fLA = 20.4311	0.77 207.5316 540.1474 Oct 69.0835 5.6056 0.9650 20.6757 20.0735 0.9491 19.6856 Living are 20.1756	Nov 68.6269 5.5751 0.9943 20.3783 20.0679 0.9921 19.2556 a / (4) = 19.8112	87.6728 88.9754 465.4490 21.0000 Dec 68.1763 5.5451 0.9982 20.1433 20.0623 0.9976 18.9081 0.4949 19.5194 0.0000	(83) (84) (85) (86) (87) (88) (90) (91) (92)
Southeast Solar gains Total gains Total gains 7. Mean interr Temperature du Utilisation fa tau alpha util living an MIT Th 2 util rest of l MIT 2 Living area f: MIT 7 Temperature ac adjusted MIT 8. Space heat:	104.7496 492.4036 492.4036 all tempera arring heati actor for g Jan 67.2927 5.4862 rea 0.9975 20.1605 20.0511 nouse 0.9967 18.9242 raction 19.5360 ing require	184.0996 569.6107 ture (heati	266.9596 639.0317 In the livi ving area, Mar 67.7316 5.5154 0.9833 20.4564 20.0567 0.9776 19.3576 19.9014 19.9014	356.0297 706.4625 ng area from li, m (see Apr 68.8545 5.5903 0.9447 20.6839 20.0707 19.6889 20.1813	421.8333 750.4121 mm Table 9, 7 Table 9a) May 69.0835 5.6056 0.8388 20.8555 20.0735 0.7897 19.9107 20.3783 20.3783	428.9220 736.3142 Th1 (C) Jun 70.2520 5.6835 0.6491 20.9350 20.0875 0.5670 20.0063 20.4659 20.4659	Jul 70.2520 5.6835 0.4815 20.9495 20.0875 0.3839 20.0164 20.4782	Aug 70.4905 5.6994 0.5326 20.9477 20.0903 0.4312 20.0186 20.4784	Sep 69.7799 5.6520 0.7938 20.9002 20.0819 0.7195 19.9716 fLA = 20.4311	0.77 207.5316 540.1474 Oct 69.0835 5.6056 0.9650 20.6757 20.0735 0.9491 19.6856 Living are 20.1756	Nov 68.6269 5.5751 0.9943 20.3783 20.0679 0.9921 19.2556 a / (4) = 19.8112	87.6728 88.9754 465.4490 21.0000 Dec 68.1763 5.5451 0.9982 20.1433 20.0623 0.9976 18.9081 0.4949 19.5194 0.0000	(83) (84) (85) (86) (87) (88) (90) (91) (92)
Southeast Solar gains Total gains 7. Mean interr Temperature du Utilisation fa tau alpha util living an MIT Th 2 util rest of h MIT 2 Living area fn MIT Temperature ac adjusted MIT 8. Space heat: Utilisation Useful gains Ext temp.	104.7496 492.4036 492.4036 all tempera alring heatile actor for g Jan 67.2927 5.4862 rea 0.9975 20.1605 20.0511 nouse 0.9967 18.9242 raction 19.5360 ijustment 19.5360 Jan 0.9961 490.4824 4.3000	184.0996 569.6107 ture (heati	266.9596 639.0317 In the livit ving area, Mar 67.7316 5.5154 0.9833 20.4564 20.0567 0.9776 19.3576 19.9014 19.9014	356.0297 706.4625 Ing area from film (see Apr 68.8545 5.5903 0.9447 20.6839 20.0707 0.9257 19.6889 20.1813 20.1813	421.8333 750.4121 mm Table 9, 7 Table 9a) May 69.0835 5.6056 0.8388 20.8555 20.0735 0.7897 19.9107 20.3783 20.3783	428.9220 736.3142 Th1 (C) Jun 70.2520 5.6835 0.6491 20.9350 20.0875 0.5670 20.0063 20.4659 20.4659	Jul 702.8469 Jul 70.2520 5.6835 0.4815 20.9495 20.0875 0.3839 20.0164 20.4782 20.4782	Aug 70.4905 5.6994 0.5326 20.9477 20.0903 0.4312 20.0186 20.4784	Sep 69.7799 5.6520 0.7938 20.9002 20.0819 6LA = 20.4311 20.4311	0.77 207.5316 540.1474 Oct 69.0835 5.6056 0.9650 20.6757 20.0735 0.9491 19.6856 Living are 20.1756	Nov 68.6269 5.5751 0.9943 20.3783 20.0679 0.9921 19.2556 a / (4) = 19.8112 19.8112	87.6728 88.9754 465.4490 21.0000 Dec 68.1763 5.5451 0.9982 20.1433 20.0623 0.9976 18.9081 0.4949 19.5194 0.0000 19.5194	(83) (84) (85) (86) (87) (88) (90) (91) (92) (93)
Southeast Solar gains Total gains Total gains Total gains The management of the second of the se	104.7496 492.4036	184.0996 569.6107 ture (heati- ng periods ains for li Feb 67.5115 5.5008 0.9940 20.2774 20.0539 0.9920 19.0967 19.6810 19.6810	12.2 266.9596 639.0317 Ing season) In the livi ving area, Mar 67.7316 5.5154 0.9833 20.4564 20.0567 0.9776 19.3576 19.9014 19.9014	356.0297 706.4625 	421.8333 750.4121 m Table 9, 7 Table 99, 835 5.6056 0.8388 20.8555 20.0735 0.7897 19.9107 20.3783 20.3783	428.9220 736.3142 Th1 (C) Jun 70.2520 5.6835 0.6491 20.9350 20.0875 0.5670 20.0063 20.4659 20.4659	Jul 70.2520 5.6835 0.4815 20.9495 20.0875 0.3839 20.0164 20.4782 20.4782	Aug 70.4905 5.6994 0.5326 20.9477 20.0903 0.4312 20.0186 20.4784 20.4784	Sep 69.7799 5.6520 0.7938 20.9002 20.0819 0.7195 19.9716 fLA = 20.4311 20.4311	0.77 207.5316 540.1474 Oct 69.0835 5.6056 0.9650 20.6757 20.0735 0.9491 19.6856 Living are 20.1756 20.1756	Nov 68.6269 5.5751 0.9943 20.3783 20.0679 0.9921 19.2556 a / (4) = 19.8112 19.8112	87.6728 88.9754 465.4490 21.0000 Dec 68.1763 5.5451 0.9982 20.1433 20.0623 0.9976 18.9081 0.4949 19.5194 0.0000 19.5194	(83) (84) (85) (86) (87) (88) (90) (91) (92) (93)
Southeast Solar gains Total gains Total gains Total gains 7. Mean interr Temperature du Utilisation fa tau alpha util living an MIT Th 2 util rest of l MIT 2 Living area fr MIT Temperature ac adjusted MIT 8. Space heat: Utilisation Useful gains Ext temp. Heat loss rate	104.7496 492.4036 492.4036 al tempera pring heati actor for g Jan 67.2927 5.4862 rea 0.9975 20.1605 20.0511 nouse 0.9967 18.9242 raction 19.5360 ing require Jan 0.9961 490.4824 4.3000 eW 1233.8677 1.0000 kWh 553.0787	184.0996 569.6107 ture (heati	266.9596 639.0317 In the livi ving area, Mar 67.7316 5.5154 0.9833 20.4564 20.0567 0.9776 19.3576 19.9014 19.9014 Mar 0.9765 624.0007 6.5000 1078.2605	356.0297 706.4625 ng area frr nil,m (see Apr 68.8545 5.5903 0.9447 20.6839 20.0707 19.6889 20.1813 20.1813 20.1813 Apr 0.9283 655.8080 8.9000 892.8820 1.0000	421.8333 750.4121 m Table 9, 17 Table 90, 18 May 69.0835 5.6056 0.8388 20.8555 20.0735 0.7897 19.9107 20.3783 20.3783 May 69.6454 11.7000 684.5802 1.0000	428.9220 736.3142 Th1 (C) Jun 70.2520 5.6835 0.6491 20.9350 20.0875 0.5670 20.0063 20.4659 20.4659	Jul 702.8469 Jul 702.520 5.6835 0.4815 20.9495 20.0875 0.3839 20.0164 20.4782 Jul 0.4261 29.4502 16.6000 300.8392	Aug 70.4905 5.6994 0.5326 20.9477 20.0186 20.4784 20.4784 20.4781 312.8079 16.4000 315.2988	Sep 69.7799 5.6520 0.7938 20.9002 20.0819 0.7195 19.9716 fLA = 20.4311 20.4311 20.4311	0.77 207.5316 540.1474 Oct 69.0835 5.6056 0.9650 20.6757 20.0735 0.9491 19.6856 Living are 20.1756 20.1756 Oct 0.9512 513.7844 10.6000 755.3659 1.0000	Nov 68.6269 5.5751 0.9943 20.3783 20.0679 0.9921 19.2556 a / (4) = 19.8112 19.8112 Nov 0.9913 480.0107 7.1000 1009.3868 1.0000	87.6728 88.9754 465.4490 21.0000 Dec 68.1763 5.5451 0.9982 20.1433 20.0623 0.9976 18.9081 0.4949 19.5194 0.0000 19.5194	(83) (84) (85) (86) (87) (88) (89) (90) (91) (92) (93) (94) (95) (96) (97) (97) (97) (98) (98)
Southeast Solar gains Total gains 7. Mean interr Temperature du Utilisation fa tau alpha util living an MIT Th 2 util rest of l MIT 2 Living area fn MIT Temperature ac adjusted MIT 8. Space heat: Utilisation Useful gains Ext temp. Heat loss rate Month fracti Space heating Space heating Space heating	104.7496 492.4036 492.4036 al tempera pring heati actor for g Jan 67.2927 5.4862 rea 0.9975 20.1605 20.0511 nouse 0.9967 19.5360 ing require Jan 0.9961 490.4824 4,3000 e 1233.8677 1.0000 kWh 553.0787 per m2	184.0996 569.6107 ture (heati- ng periods ains for li Feb 67.5115 5.5008 0.9940 20.2774 20.0539 0.9920 19.0967 19.6810 19.6810 19.6840 19.6840 19.6840 19.6840 19.6840 19.6840 19.6840 19.6840 19.6840	12.2 266.9596 639.0317 in the livi ving area, Mar 67.7316 5.5154 0.9833 20.4564 20.0567 19.3576 19.9014 19.9014 Mar 0.9765 624.0007 6.5000 1078.2605 1.0000 337.9693	356.0297 706.4625 ng area fro nil,m (see Apr 20.6839 20.0707 0.9257 19.6889 20.1813 20.1813 Apr 0.9283 655.8080 8.9000 892.8820 1.0000 170.6932	421.8333 750.4121 m Table 9, 17 Table 90, 18 May 69.0835 5.6056 0.8388 20.8555 20.0735 0.7897 19.9107 20.3783 20.3783 May 69.6454 11.7000 684.5802 1.0000	428.9220 736.3142 Th1 (C) Jun 70.2520 5.6835 0.6491 20.9875 0.5670 20.0063 20.4659 Jun 0.6020 443.2867 14.6600 455.0339 0.0000	Jul 702.8469 Jul 70.2520 5.6835 0.4815 20.9495 20.0164 20.4782 20.4782 Jul 0.4261 299.4502 196.6000 300.8392 0.0000 0.0000	Aug 70.4905 5.6994 0.5326 20.9477 20.0903 0.4312 20.0186 20.4784 20.4784 20.4784 312.8079 16.4000 315.2988 0.0000 0.0000	Sep 69.7799 5.6520 0.7938 20.9002 20.0819 0.7195 19.9716 fLA = 20.4311 20.4311 20.4311	0.77 207.5316 540.1474 Oct 69.0835 5.6056 0.9650 20.6757 20.0735 0.9491 19.6856 Living are 20.1756 20.1756 Oct 0.9512 513.7844 10.6000 755.3659 1.0000	Nov 68.6269 5.5751 0.9943 20.3783 20.0679 0.9921 19.2556 a / (4) = 19.8112 19.8112 19.8112 19.8112	87.6728 88.9754 465.4490 21.0000 Dec 68.1763 5.5451 0.9982 20.1433 20.0623 0.9976 18.9081 0.4949 19.5194 Dec 0.9971 464.0955 4.2000 1224.5428 1.0000 565.7728	(83) (84) (85) (86) (87) (88) (89) (90) (91) (92) (93) (94) (95) (96) (97) (97) (97) (98) (98)

Regs Region: England Elmhurst Energy Systems SAP2012 Calculator (Design System) version 4.14r16

CALCULATION OF DWELLING EMISSIONS FOR REGULATIONS COMPLIANCE 09 Jan 2014

Not applicable 9a. Energy requirements - Individual heating systems, including micro-CHP Fraction of space heat from secondary/supplementary system (Table 11) Fraction of space heat from main system(s) Efficiency of main space heating system 1 (in %) Efficiency of secondary/supplementary heating system, % Space heating requirement 0.0000 (201) 1.0000 (202) 100.0000 (206) 0.0000 (208) 2669.5965 (211) Apr May Jun J111 Aug Sep Oct Nov Dec 170.6932 0.0000 179.7366 381.1508 565.7728 (98) 100.0000 100.0000 100.0000 100.0000 (210) 0.0000 0.0000 0.0000 0.0000 100.0000 Space heating fuel (main heating system) 553.0787 422.4676 337.9693 170.6932 0.0000 179.7366 58.7274 0.0000 0.0000 0.0000 381.1508 565.7728 (211) Water heating requirement 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 (215) 0.0000 Water heating Water heating requirement 179,4883 157.6097 164.1305 145.1982 140.8888 123.8769 117.0562 131.0860 131.6815 150.6569 161.7358 Efficiency of water heater (217)m 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 ### Carry of Water neater (217)m 100.0000 100.0000 100.0000 100.0000 Fuel for water heating, kWh/month 179.4883 157.6097 164.1305 145.1982 Water heating fuel used Appual totals but forces. 100.0000 (216) 100.0000 (217) 174.5174 (219) 1777.9262 (219) 140.8888 123.8769 117.0562 131.0860 131.6815 150.6569 161.7358 Annual totals kWh/year Space heating fuel - main system Space heating fuel - secondary 2669 5965 (211) Electricity for pumps and fans: (BalancedWithHeatRecovery, Database: in-use factor = 1.2500, SFP = 0.7625)
mechanical ventilation fans (SFP = 0.7625)
Total electricity for the above, kWh/year
Electricity for lighting (calculated in Appendix L) 232.0713 (230a) 232.0713 (231) 338.6979 (232) Energy saving/generation technologies (Appendices M ,N and Q) PV Unit 0 (0.80 * 0.79 * 1080 * 1.00) = Total delivered energy for all uses -682.2596 (233) 4336.0324 (238) -682.2596 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP Energy kWh/year 2669.5965 Emission factor Emissions Emissions g CO2/year 1385.5206 (261) 0.0000 (263) 922.7437 (264) 2308.2643 (265) 120.4450 (267) 175.7842 (268) kg CO2/kWh 0.5190 0.0000 Space heating - main system 1 Space heating - secondary Water heating (other fuel) Space and water heating Pumps and fans 1777.9262 0.5190 232.0713 Energy for lighting 338.6979 0.5190 Energy saving/generation technologies PV Unit
Total CO2, kg/year -354.0927 (269) 2250.4008 (272) 28.8700 (273) -682.2596 0.5190 Dwelling Carbon Dioxide Emission Rate (DER) 16 CO2 EMISSIONS ASSOCIATED WITH APPLIANCES AND COOKING AND SITE-WIDE ELECTRICITY GENERATION TECHNOLOGIES 28.8700 ZC1 Total Floor Area 77.9600 2.4230 0.5190 16.3517 ZC2 TFA Assumed number of occupants
CO2 emission factor in Table 12 for electricity displaced from grid
CO2 emissions from appliances, equation (L14)
CO2 emissions from cooking, equation (L16) 2.2723 ZC3 47.4941 ZC4 Total CO2 emissions
Residual CO2 emissions offset from biofuel CHP
Additional allowable electricity generation, kWh/m²/year
Resulting CO2 emissions offset from additional allowable electricity generation 0.0000 ZC5 0.0000 ZC6 0.0000 ZC7 Net CO2 emissions 47.4941 ZC8

CALCULATION OF TARGET EMISSIONS 09 Jan 2014

SAP 2012 WORKSHEET FOR New Build (As Designed) (Version 9.92, January 2014)
CALCULATION OF TARGET EMISSIONS 09 Jan 2014 1. Overall dwelling dimensions Volume (m3) 249.4720 (1b) - (3b) (m) x 3.2000 (2b) 77.9600 (1b) Ground floor Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e)...(1n)Dwelling volume 77.9600 249.4720 (5) $(3a) + (3b) + (3c) + (3d) + (3e) \dots (3n) =$ main secondary total m3 per hour heating 0 0 Number of chimneys Number of open flues 0 * 40 = 0 * 20 = 3 * 10 = 0.0000 (6a) 0.0000 (6b) Number of intermittent fans Number of passive vents Number of flueless gas fires 30.0000 (7a) 0.0000 0 * 40 = Air changes per hour 30.0000 / (5) = Infiltration due to chimneys, flues and fans = (6a) + (6b) + (7a) + (7b) + (7c) =0.1203 (8) Pressure test Measured/design AP50 0.3703 (18) Infiltration rate Number of sides sheltered 2 (19) - [0.075 x (19)] (21) = (18) x (20) Shelter factor Infiltration rate adjusted to include shelter factor May 4.3000 1.0750 Aug 3.7000 0.9250 Sep 4.0000 1.0000 5.1000 1.2750 5.0000 1.2500 4.9000 1.2250 4.4000 1.1000 4.3000 4.5000 1.1250 4.7000 (22) 1.1750 (22a) Wind speed Wind factor Adj infilt rate 0.4013 0.3934 0.3855 0.3462 0.3383 0.2990 0.2990 0.2911 0.3147 0.3383 0.3541 0.3698 (22b) Effective ac 3. Heat losses and heat loss parameter Openings A x U W/K 25.8390 Element Gross NetArea U-value K-value m2 19.4900 (27) TER Opening Type (Uw = 1.40) Ground floor External Wall 1 77.9600 40.7600 10.1348 7.3368 (28a) (29a) 60.2500 19.4900 0.1800 Total net area of external elements Aum(A, m2) Fabric heat loss, W/K = Sum (A x U) 138.2100 (31) (26)...(30) + (32) = 43.3106 Thermal mass parameter (TMP = Cm / TFA) in kJ/m2K250.0000 (35) Thermal bridges (Sum(L x Psi) calculated using Appendix K) Total fabric heat loss 8.2430 (36) (33) + (36) =51.5536 (37) Ventilation heat loss calculated monthly $(38)m = 0.33 \times (25)m \times (5)$ Jan (38)m 47.7906 Heat transfer coeff 99.3442 Feb 47.5332 Mar Apr 46.0961 May 45.8744 Jun Jul Nov Aug 44.6513 47.2810 46.7917 (38) 44.8424 44.8424 45.8744 46.3229 98.3453 (39) Average = Sum(39)m / 12 = 97.6486 (39) Dec 1.2615 (40) 1.2525 (40) Mar 1.2678 Feb 1.2710 Apr 1.2526 May 1.2497 Jun 1.2365 Aug 1.2340 Sep 1.2416 Oct 1.2497 Nov 1.2555 1.2743 1.2365 HLP (average) Davs in month 31 (41) 31 28 31 30 31 30 31 31 30 31 30 4. Water heating energy requirements (kWh/year) Assumed occupancy Average daily hot water use (litres/day) 2.4230 (42) 91.7466 (43) Aug Sep Daily hot water use
100.9212 97.2514 93.5815
Energy content (annual)
Distribution loss (46)m = 0.15 x (45)m
22.4495 19.6345 20.2610 89.9116 89.9116 93.5815 97.2514 100.9212 (44) 97.5051 144.9409 (45) 1443.5309 (45) 17.6640 16.9491 15.7379 18.3410 20.0207 21.7411 (46) 14.6258 13.5529 15.5522 Water storage loss: Water storage loss: Store volume a) If manufacturer declared loss factor is known (kWh/day): Temperature factor from Table 2b Enter (49) or (54) in (55) 145.0000 (47) 1.3665 (48) 0.5400 (49) 0.7379 (55) Enter (49) Or (05, _ . Total storage loss 22.8747 22.8747 (56) 20.6610 22.8747 22.1368 22.8747 22.8747 22.1368 22.8747

Regs Region: England Elmhurst Energy Systems SAP2012 Calculator (Design System) version 4.14r16

CALCULAT	ION OF 1	TARGET I	EMISSION	IS 09.	lan 2014								
If cylinder co	ntains ded 22.8747	icated sola 20.6610	er storage 22.8747	22.1368	22.8747	22.1368	22.8747	22.8747	22.1368	22.8747	22.1368	22.8747	(57)
Primary loss Total heat req	23.2624	21.0112	23.2624	22.5120	23.2624	22.5120	23.2624	23.2624	22.5120	23.2624	22.5120	23.2624	
Solar input			181.2105 0.0000	162.4091 0.0000		142.1538 0.0000	136.4898	149.8182	0.0000	168.4105	178.1198	0.0000	(63)
Output from w/		172.5687	181.2105	162.4091	159.1309	142.1538	136.4898	_	149.5682	months) = S 168.4105	um(63)m =	0.0000	
Heat gains from	m water he	ating, kWh/	month 'month					Total p	er year (kW	h/year) = S	um (64) m =	1986.7578	(64)
	86.6727	76.8608	81.8216	74.8743	74.4801	68.1395	66.9520	71.3836	70.6047	77.5656	80.0981	85.1025	(65)
5. Internal ga													
Metabolic gain:													
(66) m					May 121.1507		Jul 121.1507	Aug 121.1507	Sep 121.1507	0ct 121.1507	Nov 121.1507	Dec 121.1507	(66)
Lighting gains Appliances gain	19.1785	17.0342	13.8531	10.4877	7.8397	6.6186	7.1516	9.2959	12.4770	15.8424	18.4904	19.7115	(67)
Cooking gains	215.1242	217.3565	211.7311	199.7554	184.6382	170.4301	160.9383	158.7060	164.3313	176.3071	191.4243	205.6323	(68)
Pumps, fans	35.1151 3.0000	35.1151 3.0000	35.1151 3.0000	35.1151 3.0000	35.1151 3.0000	35.1151 3.0000	35.1151 3.0000	35.1151 3.0000	35.1151 3.0000	35.1151 3.0000	35.1151 3.0000	35.1151 3.0000	
Losses e.g. ev	-96.9206	-96.9206	ralues) (Tab -96.9206	le 5) -96.9206	-96.9206	-96.9206	-96.9206	-96.9206	-96.9206	-96.9206	-96.9206	-96.9206	(71)
Water heating	116.4956	1e 5) 114.3762	109.9752	103.9921	100.1077	94.6381	89.9892	95.9457	98.0621	104.2548	111.2474	114.3851	(72)
Total Internal	413.1434	411.1121	397.9047	376.5804	354.9307	334.0321	320.4243	326.2929	337.2156	358.7495	383.5073	402.0741	(73)
6. Solar gains													
[Jan]				rea	Solar flux		g		FF	Acce		Gains	
				m2		or		Specific or Tab		fact Table		W	
Northeast Southeast			11.9		36.7938		0.6300	0	.7000 .7000	0.77 0.77		26.1030 134.0365	
Solar gains Total gains	160.1395 573.2829	281.4471 692.5592	408.1183 806.0229	544.2801 920.8605	644.8731 999.8038	655.7079 989.7400	625.7227 946.1470	548.3065 874.5994	454.8989 792.1145	317.2685 676.0180	193.3891 576.8965	136.0243 538.0985	
7. Mean intern	al tempera	ture (heati	ng season)										
Temperature du	ring heati	ng periods	in the livi	ng area fro	om Table 9, 7							21.0000	(85)
Utilisation fa	Jan 54.4963	Feb 54.6378	Mar 54.7773	Apr 55.4419	May 55.5681	Jun 56.1630	Jul 56.1630	Aug 56.2746	Sep 55.9324	Oct 55.5681	Nov 55.3135	Dec 55.0498	
alpha util living ar	4.6331	4.6425	4.6518	4.6961		4.7442	4.7442	4.7516	4.7288	4.7045	4.6876	4.6700	
-	0.9952	0.9881	0.9687	0.9098	0.7818	0.5966	0.4427	0.4960	0.7485	0.9449	0.9896	0.9964	
MIT Th 2 util rest of h	19.7177	19.9263 19.8636	20.2307 19.8662	20.5934 19.8782	20.8528 19.8804	20.9687 19.8909	20.9938 19.8909	20.9896 19.8929	20.9112 19.8869	20.5570 19.8804	20.0667 19.8759	19.6823 19.8711	
MIT 2	0.9936 18.1766	0.9842 18.4807	0.9583 18.9185	0.8808 19.4262	0.7205 19.7475	0.5043 19.8720	0.3340 19.8889	0.3817 19.8890	0.6605 19.8228	0.9207 19.3921	0.9855 18.6953	0.9952 18.1320	
Living area fr				20.0038	20.2945	20.4147	20.4357	20.4337	fLA =	Living are 19.9685	a / (4) =	0.4949	(91)
Temperature ad adjusted MIT		19.1961	19.5679	20.0038	20.2945	20.4147	20.4357	20.4337	20.3614	19.9685	19.3740	0.0000 18.8992	
8. Space heati	ng require	ment											
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Utilisation Useful gains Ext temp.	0.9918 568.6069 4.3000	0.9812 679.5604	0.9549 769.6936	0.8845 814.4599	0.7446	0.5491	0.3880	0.4385 383.4739	0.7005	0.9229 623.9237	0.9830	0.9938 534.7413	(95)
Heat loss rate Month fracti	1454.3268				837.3444		369.7414 0.0000			912.7590 1.0000			
Space heating	kWh		388.2652			0.0000	0.0000	0.0000		214.8935			
Space heating Space heating) / (4) =	3155.0580 40.4702	(98)
8c. Space cool	ing requir	ement											
Not applicable													

CALCULATION OF TARGET EMISSIONS 09 Jan 2014

				1.0000 93.5000 0.0000	(202) (206) (208)
Aug	Sep	Oct	Nov	Dec	
0.0000	0.0000	214.8935	456.6387	677.6785	(98)
0.0000	0.0000	93.5000	93.5000	93.5000	(210)
0.0000	0.0000	229.8326	488.3837	724.7898	(211)
0.0000	0.0000	0.0000	0.0000	0.0000	(215)
149.8182	149.5682	168.4105	178.1198		
79.8000	79.8000	85.4650	87.2183		
187.7421	187.4288	197.0519	204.2229		
				45.0000 75.0000 338.6979	(230e) (231) (232)
Energy kWh/year 3374.3936 0.0000 2354.7409 75.0000 338.6979			k	728.8690 0.0000 508.6240 1237.4931 38.9250 175.7842 1452.2023 15.8734 1.5500 2.2548 0.4993	(263) (264) (265) (267) (268) (272) (272a) (272b) (272c)
	Aug 0.0000 0.0000 0.0000 149.8182 79.8000 187.7421 Energy kWh/year 3374.3936 0.0000 2354.7409	Aug Sep 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 149.8182 149.5682 79.8000 79.8000 187.7421 187.4288 Energy Emissi WMh/year 3374.3936 0.0000 2354.7409 75.0000 338.6979	Aug Sep Oct 0.0000 0.0000 214.8935 0.0000 0.0000 93.5000 0.0000 0.0000 229.8326 0.0000 0.0000 0.0000 149.8182 149.5682 168.4105 79.8000 79.8000 85.4650 187.7421 187.4288 197.0519 Energy kWh/year kg COZ/kWh 374.3936 0.0000 0.0000 2354.7409 0.2160 75.0000 0.5190 338.6979 0.5190	Aug Sep Oct Nov 0.0000 0.0000 214.8935 456.6387 0.0000 0.0000 93.5000 93.5000 0.0000 0.0000 229.8326 488.3837 0.0000 0.0000 0.0000 0.0000 149.8182 149.5682 168.4105 178.1198 79.8000 79.8000 85.4650 87.2183 187.7421 187.4288 197.0519 204.2229 Energy KWh/year kg CO2/kWh k 3374.3936 0.0000 0.0000 0.0000 2354.7409 0.2160 75.0000 0.5190 338.6979 0.5190	0.0000

Property Reference	Type 15				Issued on Date	12/01/2021		
Assessment Reference	V02 Be Green			Prop Type Ref	B8 2BL.M4(3)-1B			
Property								
SAP Rating		75 C	DER	28.94	TER	26.40		
Environmental		78 C	% DER <ter< th=""><th></th><th colspan="4">-9.63</th></ter<>		-9.63			
CO ₂ Emissions (t/ye	ear)	2.09	DFEE	53.62	TFEE	57.21		
General Requireme	ents Compliance	Fail	% DFEE <tfe< th=""><th>E</th><th colspan="4">6.26</th></tfe<>	E	6.26			
Assessor Details	Ms. Madeleine Leonard, Mac MadeleineLeonard@hoarele	54600,	Assessor ID	T456-0001				
Client								

REGULATIONS COMPLIANCE REPORT - Approved Document L1A, 2013 Edition, England

		d Document L1A, 2013 Edition, England					
DWELLING AS DES	IGNED						
Top-floor flat,	total floor area 98 m²						
It is not a comp	ers items included withi	ons compliance.					
la TER and DER Fuel for main h Fuel factor:1.5 Target Carbon D Dwelling Carbon Excess emission	eating:Electricity	R) 26.40 kgCO□/m² DER) 28.94 kgCO□/m²Fail					
Dwelling Fabric	E nergy Efficiency (TFEE)5 Energy Efficiency (DFEE)53.6 kWh/m²/yrOK					
2 Fabric U-value	Average 0.15 (max. 0.30) 0.00 (max. 0.20) (no floor) 0.13 (max. 0.20) 1.40 (max. 2.00)	Highest 0.15 (max. 0.70) OK - OK 0.13 (max. 0.35) OK 1.40 (max. 3.30) OK					
2a Thermal bridging	ging g calculated from linear	thermal transmittances for each junction					
3 Air permeabil Air permeabilit Maximum	ity y at 50 pascals:	3.00 (design value) 10.0	ok				
4 Heating effic. Main heating sys Underfloor heat.		Electric underfloor heating - Electric					
Secondary heati		None					
5 Cylinder insu Hot water stora Permitted by DB Primary pipewor	lation ge SCG 1.85	Measured cylinder loss: 1.18 kWh/day OK No primary pipework					
6 Controls Space heating co		Time and temperature zone control	OK				
Hot water contro	ols:	Cylinderstat	OK				
Minimum	ghts ixed lights with low-ene	rgy fittings:100% 75%	OK .				
8 Mechanical ve	ntilation ly and extract system wer:	0.61 1.5 88% 70%	OK OK				
9 Summertime ten Overheating ris: Based on:	mperature k (Thames Valley):		ok				
Overshading: Windows facing Windows facing Windows facing Windows facing Air change rate Blinds/curtains	South: West: :	Very little 9.48 m², No overhang 6.18 m², No overhang 5.60 m², No overhang 6.00 ach 6.00 ach Dark-coloured curtain or roller blind, closed 100					
10 Key features Party wall U-va Party wall U-va Air permeabilit Photovoltaic ar	lue lue Y	0.00 W/m²K 0.00 W/m²K 3.0 m²/m²h 0.99 kW					

CALCULATIO	ON OF D	WELLING	EMISSI	ONS FOR	REGULAT	TIONS CO	OMPLIAN	CE 09	Jan 2014				
SAP 2012 WORKSH						 ry 2014) Jan 2014							
1. Overall dwel													
								Area	Sto	rey height		Volume	
Ground floor Total floor are Dwelling volume)+(1b)+(1c)+(1d)+(1e))(1n)		97.7400		(m2) 97.7400		(m) 2.5500		(m3)	(1b) - (3b) (4) (5)
2. Ventilation					main		econdary		other	tot	al m	3 per hour	
Number of chimn	A176				heating 0	+	heating 0	+	0 =	=	0 * 40 =	0.0000	(62)
Number of open Number of inter Number of passi Number of fluel	flues mittent fan ve vents				0	+	0	+	0 =	=	0 * 20 = 0 * 10 = 0 * 10 = 0 * 40 =	0.0000 0.0000 0.0000 0.0000	(6b) (7a) (7b)
Infiltration du Pressure test Measured/design		ys, flues	and fans	= (6a)+(6b))+(7a)+(7b)+	(7c) =				0.0000	Air change / (5) =	s per hour 0.0000 Yes 3.0000	(8)
Infiltration ra Number of sides	te											0.1500	(19)
Shelter factor Infiltration ra	te adjusted	to includ	e shelter :	factor					(20) = 1 (- [0.075 x 21) = (18)		0.9250 0.1388	
Wind speed Wind factor Adj infilt rate	Jan 5.1000 1.2750	Feb 5.0000 1.2500	Mar 4.9000 1.2250	Apr 4.4000 1.1000	May 4.3000 1.0750	Jun 3.8000 0.9500	Jul 3.8000 0.9500	Aug 3.7000 0.9250		Oct 4.3000 1.0750	Nov 4.5000 1.1250	Dec 4.7000 1.1750	
Balanced mecha If mechanical v	0.1769 nical venti entilation:				0.1492	0.1318	0.1318	0.1283	0.1388	0.1492	0.1561	0.1630	(23a)
If balanced wit	h heat reco	very: effi	ciency in S	% allowing :	for in-use f	actor (fro	m Table 4h)	=				74.8000	(23c)
Effective ac	0.3029	0.2994	0.2960	0.2786	0.2752	0.2578	0.2578	0.2543	0.2648	0.2752	0.2821	0.2890	(25)
3. Heat losses	and heat lo	ss paramet	er										
Element				Gross m2	Openings m2		tArea m2	U-value W/m2K	A x		-value kJ/m2K	A x K kJ/K	
Window 1.4 (Uw External Wall 1 External Roof 1				75.6000 94.7400	21.2600	21 54 94	.2600 .3400 .7400	1.3258 0.1500 0.1300	28.18 8.15 12.31	56 10	KO / MZK	KO/K	(27) (29a) (30)
Total net area Fabric heat los to Corridor Party Wall			Aum(A, m2)			4	.3400 (26)(.2000 .5400	0.0000 0.0000	= 48.65 0.00 0.00	0.0			(31) (33) (32) (32)
Thermal mass pa Thermal bridges Total fabric he	(Sum(L x P)					(33)	+ (36) =	137.4200 30.6680 79.3208	(36)
Ventilation hea	t loss calc	ulated mon	thly (38)m Mar	= 0.33 x (2	25)m x (5) May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
(38)m Heat transfer c	24.9135	24.6282	24.3429	22.9164	22.6311	21.2046	21.2046	20.9193		22.6311	23.2017	23.7723	(38)
	104.2343	103.9490	103.6637	102.2372	101.9519	100.5254	100.5254	100.2401	101.0960	101.9519	102.5225	103.0931 102.1659	
HLP HLP (average) Days in month	Jan 1.0664	Feb 1.0635	Mar 1.0606	Apr 1.0460	May 1.0431	Jun 1.0285	Jul 1.0285	Aug 1.0256	Sep 1.0343	Oct 1.0431	Nov 1.0489	Dec 1.0548 1.0453	
bajo in monen	31	28	31	30	31	30	31	31	30	31	30	31	(41)
4. Water heating	g energy re	quirements	(kWh/year))									
Assumed occupan Average daily h	су											2.7176 103.9399	
Daile hat	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Energy conte Energy content	114.3339 169.5539 (annual)	148.2929	153.0250		97.7035 128.0109	93.5459 110.4637	93.5459 102.3609	97.7035 117.4606		138.5239	110.1763 151.2096 um(45)m =	164.2039	(45)
Distribution lo Water storage 1	25.4331	0.15 x (4 22.2439	5)m 22.9537	20.0116	19.2016	16.5696	15.3541	17.6191	17.8295	20.7786	22.6814	24.6306	(46)

CALCULATION OF	DWELLIN	G EMISSI	ONS FOR	R REGULA	TIONS CO	OMPLIAN	ICE 09	Jan 2014	ļ			
Store volume a) If manufacturer dec Temperature factor f:	rom Table 2b	actor is kn	own (kWh/c	lay):							145.0000 1.1800 0.6000	(48) (49)
Enter (49) or (54) in Total storage loss 21.948		21.9480	21 2400	21 0490	21 2400	21 0400	21 0480	21 2400	21 0490	21 2400	0.7080	
If cylinder contains de		r storage	21.2400	21.9480	21.2400	21.9480	21.9480	21.2400	21.9480	21.2400	21.9480	
Primary loss 0.0000 Total heat required for	0.0000	0.0000	0.0000	0.0000		0.0000					0.0000	
191.501: Solar input 0.000	9 168.1169	174.9730 0.0000	154.6509 0.0000	149.9589	131.7037	124.3089	0.0000	140.1034 0.0000 out (sum of	0.0000	0.0000	186.1519 0.0000 0.0000	(63)
	9 168.1169		154.6509	149.9589	131.7037	124.3089		140.1034 per year (kW				
Heat gains from water 1 73.935	neating, kWh/ L 65.1666		61.3511	60.1220	53.7212	51.5934	56.6140	56.5141	63.6176	67.2692	72.1562	(65)
5. Internal gains (see	Table 5 and	5a)										
Metabolic gains (Table	5), Watts							Con	0.04	Non	Daa	
(66)m 135.879	Feb 3 135.8798		135.8798				Aug 135.8798	Sep 135.8798	Oct 135.8798	Nov 135.8798	Dec 135.8798	(66)
Lighting gains (calculated 22.521) Appliances gains (calculated 22.521)	20.0033	16.2678	12.3158	9.2062	7.7722	8.3982	10.9163	14.6518	18.6038	21.7134	23.1473	(67)
	5 255.2429	248.6370	234.5739	216.8216	200.1371	188.9907	186.3693	192.9752	207.0384	224.7906	241.4752	(68)
	36.5880		36.5880	36.5880		36.5880 0.0000	36.5880 0.0000	36.5880 0.0000	36.5880 0.0000	36.5880 0.0000	36.5880 0.0000	
Losses e.g. evaporation		alues) (Tab	le 5)									
Water heating gains (Ta			85.2099	80.8092	74.6127	69.3459	76.0941	78.4918	85.5075	93.4294	96.9841	
Total internal gains	9 435.9843					330.4988	337.1437		374.9136	403.6974	425.3706	
												(,
6. Solar gains												
[Jan]				Solar flux Table 6a W/m2		g fic data Table 6b	Specific or Tab	FF c data ole 6c	Acce fact Table	or	Gains W	
North		9.4	800	10.6334		0.3500		0.8000	0.77	00	19.5601	
South West		6.1 5.6	800	46.7521 19.6403		0.3500 0.3500		0.8000	0.77 0.77		56.0635 21.3416	
Solar gains 96.965 Total gains 535.247	2 170.9467 2 606.9310											
7. Mean internal tempe												
Temperature during heat											21.0000	(85)
	Feb	Mar	Apr	May	Jun	Jul		Sep	Oct	Nov	Dec	
tau 35.793 alpha 3.386 util living area	35.8921 3.3928	35.9909 3.3994	36.4931 3.4329	36.5952 3.4397	37.1145 3.4743	37.1145 3.4743	37.2202 3.4813	36.9050 3.4603	36.5952 3.4397	36.3915 3.4261	36.1901 3.4127	
0.987		0.9634	0.9257	0.8483	0.7126	0.5669	0.6131	0.8145	0.9421	0.9796	0.9892	
MIT 19.530 Th 2 20.028 util rest of house	3 20.0307	19.9359 20.0331	20.2747 20.0452	20.5799 20.0476	20.7976 20.0597	20.8809 20.0597	20.8675 20.0621	20.7071 20.0548	20.0476	20.0428	19.5067 20.0379	(88)
0.984 MIT 2 18.044		0.9560 18.6348	0.9094 19.1275	0.8125 19.5498	0.6426 19.8343	0.4639 19.9203	0.5121 19.9120	0.7589 19.7286	0.9262 19.1939		0.9871 18.0161	(90)
Living area fraction MIT 18.529 Temperature adjustment		19.0590	19.5016	19.8857	20.1484	20.2335	20.2236	20.0477	Living are 19.5597	18.9765	0.3261 18.5022 0.0000	
adjusted MIT 18.529		19.0590	19.5016	19.8857	20.1484	20.2335	20.2236	20.0477	19.5597	18.9765		(93)
8. Space heating requi												
Jan		Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Utilisation 0.9799 Useful gains 524.2750 Ext temp. 4.3000	3 587.6815	0.9464 633.9840 6.5000	655.9964	0.8055 619.1597 11.7000			0.5308 358.1769 16.4000	476.5719			0.9826 498.8405 4.2000	(95)
Month fracti 1.000	7 1437.4258 1.0000	1301.9165 1.0000	1083.8741		557.7576 0.0000	365.2623 0.0000	383.2757 0.0000	601.2850 0.0000	913.4553 1.0000	1217.6113	1474.4537 1.0000	
Space heating kWh 713.408	571.0281	496.9418	308.0719	160.2492	0.0000	0.0000	0.0000	0.0000	292.5138	513.6180	725.8562 3781.6880	
Space heating per m2									(98) / (4) =	38.6913	

CALCULATION OF DWELLING EMISSIONS FOR REGULATIONS COMPLIANCE 09 Jan 2014

8c. Space cooling requirement 9a. Energy requirements - Individual heating systems, including micro-CHP Fraction of space heat from secondary/supplementary system (Table 11)
Fraction of space heat from main system(s)
Efficiency of main space heating system 1 (in %)
Efficiency of secondary/supplementary heating system, %
Space heating requirement 0.0000 (201) 1 0000 (202) 1.0000 (202) 100.0000 (206) 0.0000 (208) 3781.6880 (211) Apr Feb Mar May Jun Jul Aug Sep Oct Nov Dec Space heating requirement 713.4089 571.0281 496.9418 308.0719 160.2492 0.0000 292.5138 513.6180 725.8562 (98) Space heating efficiency (main heating system 1) 100.0000 100.0000 100.0000 100 0000 100 0000 0 0000 0 0000 0 0000 0 0000 100 0000 100 0000 100 0000 (210) 308.0719 160.2492 0.0000 0.0000 0.0000 292.5138 513.6180 725.8562 (211) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 (215) Water heating Water heating requirement

191.5019 168.1169 174.9730 154.6509 149.9589 131.7037 124.3089 139.4086 140.1034 160.4719 172.4496 186.1519 (64)

100.0000 (216 ### Water heating requirement

191.5019 168.1169 174.9730 154.6509 149.9589 131.7037

Efficiency of water heater

(217) m 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000

Fuel for water heating, kWh/month

191.5019 168.1169 174.9730 154.6509 149.9589 131.7037 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 (217) 124.3089 139.4086 140.1034 160.4719 172.4496 191.5019 168.110
Water heating fuel used
Annual totals kWh/year
Space heating fuel - main system
Space heating fuel - secondary 1893.7995 (219) 3781.6880 (211) 0.0000 (215) Electricity for pumps and fans: (BalancedWithHeatRecovery, Database: in-use factor = 1.2500, SFP = 0.7625) mechanical ventilation fans (SFP = 0.7625) Total electricity for the above, kWh/year Electricity for lighting (calculated in Appendix L) 231.8527 (230a) 231.8527 (231) 397.7348 (232) Energy saving/generation technologies (Appendices M ,N and Q) PV Unit 0 (0.80 * 0.99 * 1080 * 1.00) = Total delivered energy for all uses -854.9835 -854.9835 (233) 5450.0915 (238) 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP Emission factor Emissions kWh/year 3781.6880 kg CO2/kWh 0.5190 kg CO2/year 1962.6961 (261) Space heating - main system 1 Space heating - secondary Water heating (other fuel) Space and water heating Pumps and fans 0.0000 (263) 982.8819 (264) 2945.5780 (265) 120.3316 (267) 0.0000 0.0000 1893.7995 0.5190 231.8527 397.7348 Energy for lighting 0.5190 206.4244 (268) Energy saving/generation technologies PV Unit -443.7364 (269) 2828.5975 (272) 28.9400 (273) 0.5190 -854.9835 Total CO2, kg/year Dwelling Carbon Dioxide Emission Rate (DER) 16 CO2 EMISSIONS ASSOCIATED WITH APPLIANCES AND COOKING AND SITE-WIDE ELECTRICITY GENERATION TECHNOLOGIES 28.9400 ZC1 97.7400 2.7176 0.5190 TFA Assumed number of occupants CO2 emission factor in Table 12 for electricity displaced from grid CO2 emissions from appliances, equation (L14) CO2 emissions from cooking, equation (L16) $\,$ 15.3160 ZC2 1.8848 ZC3 CO2 emissions rrom cooking, equation (LL6)
Total CO2 emissions
Residual CO2 emissions offset from biofuel CHP
Additional allowable electricity generation, kWh/m²/year
Resulting CO2 emissions offset from additional allowable electricity generation
Net CO2 emissions 46.1408 ZC4 0.0000 ZC5 0.0000 ZC6 46.1408 ZC8

CALCULATION OF TARGET EMISSIONS 09 Jan 2014

SAP 2012 WORKSHEET FOR New Build (As Designed) (Version 9.92, January 2014)
CALCULATION OF TARGET EMISSIONS 09 Jan 2014 1. Overall dwelling dimensions Volume (m3) 249.2370 (1b) - (3b) (m) x 2.5500 (2b) 97.7400 (1b) Ground floor Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e)...(1n)Dwelling volume 97.7400 $(3a) + (3b) + (3c) + (3d) + (3e) \dots (3n) =$ 249.2370 (5) main secondary total m3 per hour heating 0 0 Number of chimneys Number of open flues 0 * 40 = 0 * 20 = 3 * 10 = 0.0000 (6a) 0.0000 (6b) Number of intermittent fans Number of passive vents Number of flueless gas fires 30.0000 (7a) 0.0000 0 * 40 = Air changes per hour 30.0000 / (5) = Infiltration due to chimneys, flues and fans = (6a) + (6b) + (7a) + (7b) + (7c) =0.1204 (8) Pressure test Measured/design AP50 0.3704 (18) Infiltration rate Number of sides sheltered 1 (19) - [0.075 x (19)] (21) = (18) x (20) Shelter factor Infiltration rate adjusted to include shelter factor May 4.3000 1.0750 Sep 4.0000 1.0000 5.1000 1.2750 5.0000 1.2500 4.9000 1.2250 4.4000 1.1000 4.3000 4.5000 1.1250 4.7000 (22) 1.1750 (22a) Wind speed Wind factor Adj infilt rate 0.4368 0.4282 0.4197 0.3768 0.3683 0.3255 0.3255 0.3169 0.3426 0.3683 0.3854 0.4025 (22b) Effective ac 0.5810 (25) 3. Heat losses and heat loss parameter Openings A x U W/K 28.1856 Element Gross NetArea U-value K-value m2 21.2600 54.3400 94.7400 TER Opening Type (Uw = 1.40) External Wall 1 External Roof 1 (27) 21.2600 9.7812 12.3162 94.7400 0.1300 (30) Total net area of external elements Aum(A, m2) Fabric heat loss, W/K = Sum (A x U) 170.3400 (31) (26) . . . (30) + (32) = 50 2830 Thermal mass parameter (TMP = Cm / TFA) in kJ/m2K250.0000 (35) Thermal bridges (Sum(L x Psi) calculated using Appendix K) Total fabric heat loss 22.4200 (36) (33) + (36) = 72.7030 (37) Ventilation heat loss calculated monthly $(38)m = 0.33 \times (25)m \times (5)$ Jan (38)m 48.9704 Heat transfer coeff 121.6734 Feb Mar Apr 48.6657 48.3671 46.9643 May 46.7019 Jun Jul Aug 45.2539 Sep 45.9507 47.7879 (38) 45.4802 45.4802 46.7019 47.2328 121.0701 119.6674 119.4049 Average = Sum(39)m / 12 = 119.6661 (39) Feb 1.2418 Mar 1.2387 Apr 1.2243 May 1.2217 Jun 1.2092 Aug 1.2068 Sep 1.2140 Oct 1.2217 Nov 1.2271 1.2328 (40) 1.2243 (40) 1.2449 1.2092 HLP (average) Davs in month 31 (41) 31 28 31 30 31 30 31 31 30 31 30 4. Water heating energy requirements (kWh/year) Assumed occupancy Average daily hot water use (litres/day) 2.7176 (42) 98.7429 (43) Aug Sep Daily hot water use 108.6172 104.6675 100 Energy content (annual) Distribution loss (46)m = 0.15 x (45)m 24.1614 21.1317 21 104.6675 100.7178 140.8782 145.3737 92.8183 88.8686 88.8686 92 8183 96.7681 100.7178 104.6675 108.6172 (44) 126.7403 131.5977 155.9937 (45) 97.2428 21.8061 19.0111 18.2416 15.7411 19.7397 21.5474 23.3991 (46) 14.5864 16.7381 16.9380 Water storage loss: Water storage loss: Store volume a) If manufacturer declared loss factor is known (kWh/day): Temperature factor from Table 2b Enter (49) or (54) in (55) 145.0000 (47) 1.3665 (48) 0.5400 (49) 0.7379 (55) Enter (49) 01 10-1 2... Total storage loss 22.8747 20.6610 22.8747 22.1368 22.8747 22.8747 (56) 22.8747 22.1368 22.8747

Regs Region: England Elmhurst Energy Systems SAP2012 Calculator (Design System) version 4.14r16

CALCULAT	ION OF 1	ARGET E	MISSION	IS 09 J	lan 2014								
If cylinder co				22 1260	22 8747	22 1260	22.8747	22.8747	22.1368	22.8747	22.1368	22 0747	(E7)
Primary loss Total heat red	22.8747 23.2624 quired for		22.8747 23.2624 ng calculat	22.1368 22.5120 ed for each	22.8747 23.2624 n month	22.1368 22.5120	23.2624	23.2624	22.5120	23.2624	22.5120	22.8747 23.2624	
Solar input	207.2132 0.0000	182.5504 0.0000	191.5108 0.0000	171.3891 0.0000	167.7475 0.0000	149.5893 0.0000	143.3799 0.0000	0.0000	157.5690	177.7347	0.0000	0.0000	(63)
Output from w/		182.5504	191.5108	171.3891	167.7475	149.5893	143.3799	157.7246	157.5690	months) = S 177.7347	188.2979		(64)
Heat gains fro	om water he	ating, kWh/ 80.1798	month 85.2464	77.8602	77.3451	70.6117	69.2429	Total p 74.0125	er year (kW 73.2650	Nh/year) = S 80.6659	um (64) m = 83.4824	2096.8373 88.7776	
	30.1070	00.1730	00.2101	,,,,,,,,,	,,,,,,,,,,,	70.0117	03.2.123	71.0120	7012000	00.0003	00.1021	00.7770	(00)
5. Internal ga													
Metabolic gair	ns (Table 5), Watts											
(66)m Lighting gains		135.8798		135.8798	135.8798			Aug 135.8798	Sep 135.8798	Oct 135.8798	Nov 135.8798	Dec 135.8798	(66)
Appliances gai	22.5386 ins (calcul	20.0186 ated in App	16.2802 endix L, eq	12.3251 puation L13	9.2132 or L13a), a	7.7782 lso see Tab	8.4046 le 5	10.9246	14.6630	18.6180	21.7300	23.1650	,
Cooking gains	(calculate	d in Append		ion L15 or	216.8216 L15a), also 36.5880	see Table		186.3693 36.5880	192.9752 36.5880	207.0384 36.5880	224.7906 36.5880	241.4752 36.5880	
Pumps, fans Losses e.g. ev	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	
Water heating	gains (Tab			-108.7038 108.1392	-108.7038				-108.7038	-108.7038		-108.7038	
Total internal	gains		446.2597	421.8021	103.9585 396.7573	98.0719 372.7510	93.0684 357.2277	99.4792 363.5370	101.7570 376.1591	108.4219	115.9477	119.3247 450.7288	
6. Solar gains													
[Jan]				rea	Solar flux				FF	Acce		Gains	
				m2	Table 6a W/m2	Speci or		Specific or Tab		fact Table	or	W	
North South			9.4	800 800	10.6334 46.7521		0.6300 0.6300	0	.7000 .7000	0.77 0.77		30.8072 88.3001	
West			5.6	000	19.6403		0.6300	0	.7000	0.77		33.6130	
Solar gains Total gains					626.9735 1023.7307								
7. Mean intern	nal tempera	ture (heati	ng season)										
Temperature du Utilisation fa	ring heati	ng periods	in the livi	ng area fro	om Table 9, 5							21.0000	(85)
tau	Jan 55.7846	Feb	Mar 56.0626	Apr 56.7197	May	Jun 57.4320	Jul 57.4320	Aug 57.5422	Sep 57.2043	Oct 56.8444	Nov 56.5928	Dec 56.3321	
alpha util living an	rea	4.7283			4.7896	4.8288	4.8288	4.8361	4.8136	4.7896	4.7729	4.7555	(0.5)
MIT	0.9975	0.9940	0.9840	0.9500 20.4816	0.8591	0.6910	0.5254	0.5836	0.8300 20.8647	0.9702	0.9946	0.9981	
Th 2 util rest of h		19.8867	19.8892	19.9006	19.9027	19.9127	19.9127	19.9145	19.9088	19.9027	19.8984	19.8939	
MIT 2 Living area fr	0.9966 18.1107 action	0.9919 18.3721	0.9782 18.7805	0.9314 19.2995	0.8085 19.6919	0.5957 19.8773	0.4021 19.9085	0.4570 19.9070	0.7523 19.8027 fLA =	0.9554 19.2952 Living are		18.0748	(90)
MIT Temperature ac	18.6163 djustment	18.8506		19.6849		20.2256	20.2606		20.1490	19.6785	19.0652	18.5826 0.0000	(92)
adjusted MIT	18.6163	18.8506	19.2174	19.6849	20.0470	20.2256	20.2606	20.2571	20.1490	19.6785	19.0652	18.5826	(93)
Q Coope heat													
8. Space heati													
Utilisation	Jan 0.9952		Mar 0.9736				Jul 0.4426						
Useful gains Ext temp. Heat loss rate	4.3000				835.3768 11.7000								
Month fracti	1741.9127 1.0000				996.6703 1.0000		432.6190 0.0000	454.9773 0.0000	717.7352 0.0000	1084.0225 1.0000	1435.0538 1.0000	1732.9696 1.0000	(97) (97a)
Space heating Space heating		652.1463	537.9632	296.1840	120.0024	0.0000	0.0000	0.0000	0.0000	307.5047	595.7168	859.1309 4208.3529	
Space heating	per m2									(98) / (4) =	43.0566	
8c. Space cool	ling require	ement											
Not applicable	4												

CALCULATION OF TARGET EMISSIONS 09 Jan 2014

9a. Energy requirements -												
Fraction of space heat fro Fraction of space heat fro Efficiency of main space be Efficiency of secondary/sr Space heating requirement	om secondar om main sys	ry/supplementstem(s)	ntary system								0.0000 1.0000 93.5000 0.0000 4500.9122	(202) (206) (208)
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Space heating requirement 839.7046 Space heating efficiency	652.1463	537.9632	296.1840	120.0024	0.0000	0.0000	0.0000	0.0000	307.5047	595.7168	859.1309	(98)
93.5000	93.5000	93.5000	93.5000	93.5000	0.0000	0.0000	0.0000	0.0000	93.5000	93.5000	93.5000	(210)
Space heating fuel (main 1 898.0798	neating sys 697.4826	575.3617	316.7743	128.3448	0.0000	0.0000	0.0000	0.0000	328.8821	637.1303	918.8566	(211)
Water heating requirement 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(215)
Water heating Water heating requirement												
207.2132	182.5504	191.5108	171.3891	167.7475	149.5893	143.3799	157.7246	157.5690	177.7347	188.2979	202.1307	
Efficiency of water heate: (217)m 88.1603	87.9217	87.4226	86.2604	83.9388	79.8000	79.8000	79.8000	79.8000	86.2633	87.6765	79.8000 88.2463	
Fuel for water heating, kt 235.0414	%h/month 207.6284	219.0633	198.6881	199.8450	187.4553	179.6740	197.6499	197.4549	206.0374	214.7644	229.0528	
Water heating fuel used Annual totals kWh/year Space heating fuel - main Space heating fuel - secon											2472.3550 4500.9122 0.0000	(211)
Electricity for pumps and central heating pump main heating flue fan Total electricity for the Electricity for lighting Total delivered energy for	above, kWi		ix L)								30.0000 45.0000 75.0000 398.0381 7446.3053	(230e) (231) (232)
12a. Carbon dioxide emiss:	ions - Indi	ividual heat	ting system	s including	micro-CHP							
Space heating - main syst Space heating - secondary Water heating (other fuel) Space and water heating Pumps and fans Energy for lighting Total CO2, kg/m2/year Emissions per m2 for space Fuel factor (electricity) Emissions per m2 for light Emissions per m2 for pumps	e and water	r heating					Energy kWh/year 4500.9122 0.0000 2472.3550 75.0000 398.0381		ion factor kg CO2/kWh 0.2160 0.0000 0.2160 0.5190	k	Emissions of CO2/year 972.1970	(263) (264) (265) (267) (268) (272) (272a) (272b)

GUILD LIVING EPSOM GUILD LIVING

SUSTAINABILITY ENERGY AND SUSTAINABILITY DOCUMENT - REV. 5

Appendix B: BRUKL Document.

BRUKL Output Document

Compliance with England Building Regulations Part L 2013

Project name

Guild Living Epsom - Non Domestic

As designed

Date: Thu Jan 07 10:25:57 2021

Administrative information

Building Details

Address: Address 1, City, Postcode

Certification tool

Calculation engine: Apache

Calculation engine version: 7.0.12

Interface to calculation engine: IES Virtual Environment

Interface to calculation engine version: 7.0.12

BRUKL compliance check version: v5.6.a.1

Owner Details Name: Name

Telephone number: Phone

Address: Street Address, City, Postcode

Certifier details

Name: Name

Telephone number: Phone

Address: Street Address, City, Postcode

Criterion 1: The calculated CO₂ emission rate for the building must not exceed the target

CO ₂ emission rate from the notional building, kgCO ₂ /m ² .annum	19.9
Target CO ₂ emission rate (TER), kgCO ₂ /m ² .annum	19.9
Building CO₂ emission rate (BER), kgCO₂/m².annum	19.9
Are emissions from the building less than or equal to the target?	BER =< TER
Are as built details the same as used in the BER calculations?	Separate submission

Criterion 2: The performance of the building fabric and fixed building services should achieve reasonable overall standards of energy efficiency

Values which do not achieve the standards in the Non-Domestic Building Services Compliance Guide and Part L are displayed in red.

Building fabric

Element	U a-Limit	Ua-Calc	U _{i-Calc}	Surface where the maximum value occurs*
Wall**	0.35	0.17	0.18	GR00000B:Surf[2]
Floor	0.25	0.15	0.15	LV00001B:Surf[0]
Roof	0.25	0.15	0.15	GR000007:Surf[1]
Windows***, roof windows, and rooflights	2.2	1.41	2	LV000153:Surf[0]
Personnel doors	2.2	2.2	2.2	GR00000B:Surf[1]
Vehicle access & similar large doors	1.5	1	-	No Vehicle access doors in building
High usage entrance doors	3.5	-	-	No High usage entrance doors in building
II = Limiting area weighted average II values [M	///ma2l/\1			•

U_{a-Limit} = Limiting area-weighted average U-values [W/(m²K)]

U_{a-Calc} = Calculated area-weighted average U-values [W/(m²K)]

U_{i-Calc} = Calculated maximum individual element U-values [W/(m²K)]

N.B.: Neither roof ventilators (inc. smoke vents) nor swimming pool basins are modelled or checked against the limiting standards by the tool.

Air Permeability	Worst acceptable standard	This building
m³/(h.m²) at 50 Pa	10	3

Building services

The standard values listed below are minimum values for efficiencies and maximum values for SFPs. Refer to the Non-Domestic Building Services Compliance Guide for details.

Whole building lighting automatic monitoring & targeting with alarms for out-of-range values	YES
Whole building electric power factor achieved by power factor correction	>0.95

1- HVAC 1 - Elect Heater + Natural Vent

	Heating efficiency	Cooling efficiency	Radiant efficiency	SFP [W/(I/s)]	HR efficiency					
This system	1	-	0.2	0	-					
Standard value	N/A	N/A	N/A	N/A	N/A					
Automatic moni	Automatic monitoring & targeting with alarms for out-of-range values for this HVAC system YES									

2- HVAC 4 - Elect Heater + Extract

	Heating efficiency	Cooling efficiency	Radiant efficiency	SFP [W/(I/s)]	HR efficiency			
This system	1	-	0.2	0	-			
Standard value	N/A	N/A	N/A	N/A	N/A			
Automatic monitoring & targeting with alarms for out-of-range values for this HVAC system YES								

3- HVAC 5 - FCU + MVHR

	Heating efficiency	Cooling efficiency	Radiant efficiency	SFP [W/(I/s)]	HR efficiency			
This system	3	3.4	0	1.8	8.0			
Standard value	2.5*	3.2	N/A	1.6^	0.5			
Automatic monitoring & targeting with alarms for out-of-range values for this HVAC system YES								

Standard shown is for all types >12 kW output, except absorption and gas engine heat pumps. For types <=12 kW output, refer to EN 14825

4- HVAC 2 - All Air Heating

	Heating efficiency	Cooling efficiency	Radiant efficiency	SFP [W/(I/s)]	HR efficiency			
This system	3	-	0	1.8	0.8			
Standard value	2.5*	N/A	N/A	1.5^	0.5			
Automatic moni	Automatic monitoring & targeting with alarms for out-of-range values for this HVAC system YES							

Standard shown is for all types >12 kW output, except absorption and gas engine heat pumps. For types <=12 kW output, refer to EN 14825 for limiting standards.

Local mechanical ventilation, exhaust, and terminal units

ID	System type in Non-domestic Building Services Compliance Guide
Α	Local supply or extract ventilation units serving a single area
В	Zonal supply system where the fan is remote from the zone
С	Zonal extract system where the fan is remote from the zone
D	Zonal supply and extract ventilation units serving a single room or zone with heating and heat recovery
Е	Local supply and extract ventilation system serving a single area with heating and heat recovery
F	Other local ventilation units
G	Fan-assisted terminal VAV unit
Н	Fan coil units
1	Zonal extract system where the fan is remote from the zone with grease filter

Page 2 of 20 Page 1 of 20

^{*} There might be more than one surface where the maximum U-value occurs.

^{**} Automatic U-value check by the tool does not apply to curtain walls whose limiting standard is similar to that for windows.

^{***} Display windows and similar glazing are excluded from the U-value check.

[^] Limiting SFP may be extended by the amounts specified in the Non-Domestic Building Services Compliance Guide if the system includes additional components as listed in the Guide

[^] Limiting SFP may be extended by the amounts specified in the Non-Domestic Building Services Compliance Guide if the system includes additional components as listed in the Guide.

[&]quot;No HWS in project, or hot water is provided by HVAC system"

Zone name				SI	P [W	(l/s)]				UD officionous	
ID of system type	Α	В	С	D	E	F	G	Н	1	HRE	efficiency
Standard value	0.3	1.1	0.5	1.9	1.6	0.5	1.1	0.5	1	Zone	Standard
Level 00 - A3 001 Acc Shower	-	-	0.5	-	-	-	-	-	-	-	N/A
Level 00 - A3 002 Female Changing	rea	-	0.5	-	-	-	-	-	-	-	N/A
Level 00 - A3 004 Male Changing Are	a-	-	0.5	-	-	-	-		-	-	N/A
Level 00 - A3 005 ACC Shower		-	0.5	-	-	-	-	-		-	N/A
Level 00 - A3 007 Gym	-	-	-	-	-	-	-	0.2	-	-	N/A
Level 00 - A3 009 Waiting Area	-	-		-	-	-	-	0.2	-	-	N/A
Level 00 - A3 010 WC	-	-	0.5	-	-	-	-	-	-	-	N/A
Level 00 - A3 013 Therapy Room 01	-	-	-	-	-	-	-	0.2	-	-	N/A
Level 00 - A3 015 Acc Shower	-	-	0.5	-	-	-	-	-	-	-	N/A
Level 00 - A3 016 Consultation Room	s-01	-	-	-	-	-	-	0.2	-	-	N/A
Level 00 - A3 017 Unisex Therapy Ro	om	-	-	-	-	-	-	0.2	-	-	N/A
Level 00 - A3 018 Consultation Room	s-02	-	-	-	-	-	-	0.2	-	-	N/A
Level 00 - A4 009 Lounge		-	-	-	-	-	-	0.2	-	-	N/A
Level 00 - A4 011 Beauty Salon	-	-	-	-	-	-	-	0.2	-	-	N/A
Level 00 - A4 011 Multipurpose Room	-	-	-	-	-	-	-	0.2	-	-	N/A
Level 00 - A4 012 Multipurpose Room	-	-	-	-	-	-	-	0.2	-	-	N/A
Level 00 - A4 013 M WC		-	0.5	-	-	-	-	-	-	-	N/A
Level 00 - A4 014 GM		-	-	-	-	-	-	0.2	-	-	N/A
Level 00 - A4 015 Admin HR		-	-	-	-	-	-	0.2	-	-	N/A
Level 00 - A4 016 Sales Office		-	-	-	-	-	-	0.2	-	-	N/A
Level 00 - A4 017 Sales Suite		-	-	-	-	-	-	0.2	-	-	N/A
Level 00 - A4 018 Main Entrance			-		-	-		0.2	-	-	N/A
Level 00 - A4 020 Office		-	-	-	-	-	-	0.2	-	-	N/A
Level 00 - B1 001 Resturant Kitchen		-	0.5	-	-	-	-	-	-	-	N/A
Level 00 - B1 003 Resturant Office		-	-	-	-	-	-	0.2	-	-	N/A
Level 00 - B1 004 Staff WC	-	-	0.5	-	-	-	-	-	-	-	N/A
Level 00 - B1 014 Female WC		-	0.5	-	-	-	-	-	-	-	N/A
Level 00 - B1 016 Dis WC		-	0.5	-	-	-	-	-	-	-	N/A
Level 00 - B1 017 Male WC		-	0.5	-	-	-	-	-			N/A
Level 00 - B1 018 Resturant/Cafe/Bar			-		-	-		0.2		-	N/A
Level 00 - B1 029 Retail	-	-	-	-	-	-	-	0.2		-	N/A
Level 00 - B1 030 M WC		-	0.5		-	-	-	-			N/A
Level 00 - B2 007 Retail			-	-		-	-	0.2		-	N/A
Level 00 - B2 009 Retail	-	-	-	-	-	-	-	0.2	-		N/A
Level 00 - Lounge		-	-	-	-	-	-	0.2	-	-	N/A
Level 01 - A3 109 Cinema		-	-	-	-	-	-	0.2	-	-	N/A
Level 01 - A3 112 Changing Area	-	-	0.5	-	-	-	-	-	-		N/A
Level 01 - A3 113 Assisted Bathroom	-		0.5	-			-	-	-		N/A
Level 01 - A3 120 WC	-	-	0.5	-	-	-		-	-		N/A
Level 01 - A3 122 Nurse Office	-	-	-	-	-	-	-	0.2	-		N/A
Level 01 - A3 124 Care Takers Office	_							0.2			N/A
Level 01 - A3 125 Care Takers Works	_	-	-	-	-	-	-	0.2	-		N/A
Level 01 - A3 128 Dis WC	-	-	0.5	-	-	-	-	-	-	-	N/A

Zone name		SFP [W/(l/s)]					ир.	HR efficiency			
ID of system type	Α	В	С	D	E	F	G	Н	1	пке	inclency
Standard value	0.3	1.1	0.5	1.9	1.6	0.5	1.1	0.5	1	Zone	Standard
Level 01 - A3 129 Female WC	-	-	0.5	-	-	-	-	-	-	-	N/A
Level 01 - A3 130 M WC	-	-	0.5	-	-	-	-	-	-	-	N/A
Level 01 - A4 111 Bar/Banquette Sea	ting	-	-	-	-	-	-	0.2	-	-	N/A
Level 01 - A4 112 Unisex WC		-	0.5	-	-	-		-		-	N/A
Level 01 - A4 114 M WC	-	-	0.5	-	-	-	-	-	-	-	N/A
Level 01 - A4 115 Cinema/Theatre Ba	r-	-	-	-	-	-	-	0.2	-	-	N/A
Level 02 - A3 201 GCS Bedroom		-	-	-	-	-	-	0.2	-	-	N/A
Level 02 - A3 201 GCS Ensuite		-	0.5	-	-	-	-	-		-	N/A
Level 02 - A3 202 GCS Bedroom	-	-	-	-	-	-	-	0.2	-	-	N/A
Level 02 - A3 202 GCS Ensuite		-	0.5	-	-	-		-	-	-	N/A
Level 02 - A3 203 GCS Bedroom		-	-	-	-	-	-	0.2	-	-	N/A
Level 02 - A3 203 GCS Ensuite	-	-	0.5	-	-	-	-	-	-	-	N/A
Level 02 - A3 204 GCS Bedroom			-					0.2	-	-	N/A
Level 02 - A3 204 GCS Ensuite			0.5	-			-	-	-	-	N/A
Level 02 - A3 205 GCS Bedroom	-	-	-	-	-	-	-	0.2	-	-	N/A
Level 02 - A3 205 GCS Ensuite			0.5			-	-	-	-		N/A
Level 02 - A3 206 GCS Bedroom			-					0.2			N/A
Level 02 - A3 206 GCS Ensuite	-		0.5	-	-	-	-	-		-	N/A
Level 02 - A3 207 GCS Bedroom			-					0.2			N/A
Level 02 - A3 207 GCS Ensuite			0.5	-	-			-	-	1.	N/A
Level 02 - A3 208 GCS Bedroom	-		-	-	-	-	-	0.2	-	1.	N/A
Level 02 - A3 208 GCS Ensuite			0.5		_	_		-			N/A
Level 02 - A3 209 GCS Bedroom		_	-		-			0.2			N/A
Level 02 - A3 209 GCS Bedroom		-	0.5			_		_		_	N/A
Level 02 - A3 210 GCS Bedroom	-	-	-		-	-	-	0.2	-		N/A
Level 02 - A3 210 GCS Bedroom	-	-	0.5	-	-	-	-				N/A
Level 02 - A3 210 GCS Ensuite	-	-		-	-	-	-	0.2	-		N/A
	-	-	- 0.5	-	-	-	-		-	-	
Level 02 - A3 211 GCS Ensuite	-	-	0.5	-	-	-	-	-	-	-	N/A
Level 02 - A3 212 GCS Bedroom	-		0.5	-		-	-	0.2	-	-	N/A
Level 02 - A3 212 GCS Ensuite			0.5	-		-	-	-	-	-	N/A
Level 02 - A3 213 Nurse Room	-	-	-	-	-	-	-	0.2	-	-	N/A
Level 02 - A3 214 GCS Ensuite			0.5		-	-		-		-	N/A
Level 02 - A3 215 Care Amenity Space	1e-	-	-	-	-	-	-	0.2	-	-	N/A
Level 02 - A3 217 Kitchen/Dining	-	-	-	-	-	-	-	0.2	-	-	N/A
Level 02 - A3 218 Care Amenity Space	e-	-	-	-	-	-	-	0.2	-	-	N/A
Level 02 - A3 220 WC	-	-	0.5	-	-	-	-	-	-	-	N/A
Level 02 - A4 201 GCS Bedroom	-	-	-	-	-	-	-	0.2	-	-	N/A
Level 02 - A4 201 GCS Ensuite	-	-	0.5	-	-	-	-	-	-	-	N/A
Level 02 - A4 202 GCS Bedroom	-	-	-	-	-	-	-	0.2	-	-	N/A
Level 02 - A4 202 GCS Ensuite	-	-	0.5	-	-	-	-	-	-	-	N/A
Level 02 - A4 203 GCS Bedroom	-	-	-	-	-	-	-	0.2	-	-	N/A
Level 02 - A4 203 GCS Ensuite	-	-	0.5	-	-	-	-	-	-	-	N/A
Level 02 - A4 204 GCS Bedroom	-	-	-	-	-	-	-	0.2	-	-	N/A

Page 3 of 20

Zone name		SFP [W/(I/s)]							HR efficiency		
ID of system type	Α	В	С	D	E	F	G	Н	1	HRE	miciency
Standard value	0.3	1.1	0.5	1.9	1.6	0.5	1.1	0.5	1	Zone	Standard
Level 02 - A4 205 GCS Bedroom	-	-	-	-	-	-	-	0.2	-	-	N/A
Level 02 - A4 205 GCS Ensuite	-	-	0.5	-	-	-	-	-	-	-	N/A
Level 02 - A4 206 GCS Bedroom	-	-	-	-	-	-	-	0.2	-	-	N/A
Level 02 - A4 206 GCS Ensuite	-	-	0.5	-	-	-	-			-	N/A
Level 02 - A4 207 GCS Bedroom	-	-	-	-	-	-	-	0.2	-	-	N/A
Level 02 - A4 207 GCS Ensuite	-	-	0.5	-	-	-	-	-	-	-	N/A
Level 02 - A4 208 GCS Bedroom	-	-	-	-	-	-	-	0.2	-	-	N/A
Level 02 - A4 208 GCS Ensuite	-	-	0.5	-	-	-	-		- 1	-	N/A
Level 02 - A4 209 GCS Bedroom	-	-	-	-	-	-	-	0.2	-	-	N/A
Level 02 - A4 209 GCS Ensuite	-	-	0.5	-	-	-	-	-	-	-	N/A
Level 02 - A4 210 GCS Bedroom	-	-	-	-	-	-	-	0.2	-	-	N/A
Level 02 - A4 210 GCS Ensuite	-	-	0.5	-	-	-	-	-	-	-	N/A
Level 02 - A4 211 GCS Bedroom		-	-	-	-	-	-	0.2	-	-	N/A
Level 02 - A4 211 GCS Ensuite	-	-	0.5	-	-	-	-	-	-	-	N/A
Level 02 - A4 212 GCS Bedroom	-	-	-	-	-	-	-	0.2	-	-	N/A
Level 02 - A4 212 GCS Ensuite	-	-	0.5	-	-	-	-	-	-	-	N/A
Level 02 - A4 213 GCS Bedroom	-	-	-	-	-	-	-	0.2	-	-	N/A
Level 02 - A4 213 GCS Ensuite	-	-	0.5	-	-	-	-	-	-	-	N/A
Level 02 - A4 214 GCS Bedroom	-	-	-	-	-	-	-	0.2	-	-	N/A
Level 02 - A4 214 GCS Ensuite		-	0.5	-	-	-	-	-	-	-	N/A
Level 02 - A4 215 GCS Bedroom	-	-	-	-	-	-	-	0.2	-	-	N/A
Level 02 - A4 215 GCS Ensuite	-	-	0.5	-	-	-	-	-	-	-	N/A
Level 02 - A4 216 GCS Bedroom	-	-	-	-	-	-	-	0.2	-	-	N/A
Level 02 - A4 216 GCS Ensuite	-	-	0.5	-	-	-	-	-	-	-	N/A
Level 02 - A4 219 Care Amenity Space	e-	-	-	-	-	-	-	0.2	-	-	N/A
Level 02 - A4 222 WC	-	-	0.5	-	-	-	-	-	-	-	N/A
Level 02 - A4 224 Kitchen/Dining	-	-	-	-	-	-	-	0.2	-	-	N/A
Level 00 - Retail	-	-	-	-	-	-	-	0.3	-	-	N/A

General lighting and display lighting	Lumino	ous effic			
Zone name	Luminaire	Lamp	Display lamp	General lighting [W	
Standard value	60	60	22		
Level 00 - A1 004 Corridor	-	85	-	75	
Level 00 - A1 005 Cold Water Storage	85	-	-	428	
Level 00 - A1 006 Corridor	-	85	-	17	
Level 00 - A1 007 Refuse	85	-	-	26	
Level 00 - A1 008 Mail/BOH	85	-	-	8	
Level 00 - A1 009 Refuse Lobby	-	85	-	18	
Level 00 - A1 010 Corridor	-	85	-	55	
Level 00 - A2 005 Lift Lobby	-	85	-	144	
Level 00 - A2 006 Refuse	85	-	-	35	
Level 00 - A2 007 Refuse Lobby	-	85	-	18	
Level 00 - A2 008 APS Plant	85	-	-	95	

General lighting and display lighting	Lumino	ous effic		
Zone name	Luminaire	Lamp		General lighting [W]
Standard value	60	60	22	
Level 00 - A2 010 BOH	85	-	-	8
Level 00 - A2 011 BT Intake Room	85	-	-	60
Level 00 - A2 012 Alternative Telecom Room	85	-	-	43
Level 00 - A2 013 Scooter/BOH	85	-	-	14
Level 00 - A2 014 Lobby	-	85	-	20
Level 00 - A2 015 Corridor	-	85	-	88
Level 00 - A2 016 Lift Lobby	-	85	-	38
Level 00 - A3 001 Acc Shower	-	85	-	33
Level 00 - A3 002 Female Changing Area	-	85	-	72
Level 00 - A3 003 Lobby	-	85	-	36
Level 00 - A3 004 Male Changing Area	-	85	-	72
Level 00 - A3 005 ACC Shower	-	85	-	33
Level 00 - A3 006 Corridor		85		46
Level 00 - A3 007 Gym		85	-	303
Level 00 - A3 009 Lobby		85	-	192
Level 00 - A3 009 Waiting Area		85	-	102
Level 00 - A3 010 WC		85	-	40
Level 00 - A3 011 WC		85		27
Level 00 - A3 017 Lobby	85	- 00	-	22
		85	60	391
Level 00 - A3 013 Therapy Room 01	-		60	
Level 00 - A3 014 Trench Intake	85	-	-	74
Level 00 - A3 015 Acc Shower	-	85	-	33
Level 00 - A3 016 Consultation Rooms 01		85	60	271
Level 00 - A3 017 Unisex Therapy Room	-	85	60	374
Level 00 - A3 018 Consultation Rooms 02	-	85	60	306
Level 00 - A3 019 Lift Lobby	-	85	-	91
Level 00 - A3 020 Lobby	-	85	-	115
Level 00 - A3 021 Pool Water Treatment Plant	85	-	-	249
Level 00 - A3 022 Swimming Pool	-	85	-	1168
Level 00 - A3 024 Scooters/BOH	85	-	-	27
Level 00 - A3 025 Refuse	85	-	-	38
Level 00 - A3 026 Refuse Lobby	-	85	-	28
Level 00 - A3 030 Plant Room	85	-	-	838
Level 00 - A3 031 Generator	85	-	-	195
Level 00 - A3 032 Substation	85	-	-	195
Level 00 - A3 033 Gym Store	85	-	-	12
Level 00 - A4 001 Lift Lobby	-	85	-0	84
Level 00 - A4 002 BoH	85	-	-	13
Level 00 - A4 004 Lift Lobby	-	85	-	78
Level 00 - A4 005 Lobby	-	85	-	32
Level 00 - A4 006 Store	85	-	-	30
Level 00 - A4 007 Linen	85	-	-	23
Level 00 - A4 008 Refuse	85	-	-	45

Page 5 of 20

General lighting and display lighting		us effic		
Zone name	Luminaire	Lamp	Display lamp	General lighting [W
Standard value	60	60	22	
Level 00 - A4 009 Lobby		85	-	190
Level 00 - A4 009 Lounge	-	85	-	100
Level 00 - A4 010 Airlock Lobby	-	85	-	11
Level 00 - A4 011 Beauty Salon		85	60	255
Level 00 - A4 011 Multipurpose Room		85		280
Level 00 - A4 012 Multipurpose Room	-	85	-	201
Level 00 - A4 013 M WC		85	-	43
Level 00 - A4 014 GM	85	-	-	219
Level 00 - A4 015 Admin HR	85	-	-	223
Level 00 - A4 016 Sales Office	85	-	-	190
Level 00 - A4 017 Sales Suite	85	-	-	211
Level 00 - A4 018 Main Entrance	-	85	60	920
Level 00 - A4 019 Airlock Lobby		85	-	35
Level 00 - A4 020 Office	85	-		169
Level 00 - A4 021 Post	85	-	-	21
Level 00 - A4 022 Refuse	85	-	-	45
Level 00 - A4 023 Refuse Lobby		85	-	26
Level 00 - A4 025 Salon BoH	85	-	-	12
Level 00 - A5 003 Refuse Lobby		85		37
Level 00 - A5 004 Trench Intake	85	-		71
Level 00 - A5 005 Lift Lobby		85	-	132
Level 00 - B1 001 Resturant Kitchen		85	_	465
Level 00 - B1 002 Kitchen BOH	85	-		34
Level 00 - B1 003 Resturant Office	85			144
Level 00 - B1 004 Staff WC		85	-	65
Level 00 - B1 005 Cold	85	-		14
Level 00 - B1 006 DRY	85		-	23
Level 00 - B1 007 Gas Meter Room	85	-	-	84
Level 00 - B1 008 Resturant Refuse	85	-	-	20
Level 00 - B1 009 ASHP Plant	85	-	-	389
Level 00 - B1 010 Store	85	-	-	23
Level 00 - B1 011 Switch Room	85		-	78
Level 00 - B1 012 Substation	85	-		122
Level 00 - B1 013 LV Switch Room	85	-		129
Level 00 - B1 014 Female WC	-	85		75
Level 00 - B1 014 Perhale WC		85	-	30
Level 00 - B1 016 Dis WC		85	-	50
Level 00 - B1 017 Male WC		85		73
Level 00 - B1 017 Walle WC		85	60	834
	-			
Level 00 - B1 020 Lift Lobby	- 0E	85	-	70
Level 00 - B1 021 Lobby	85	-	-	33
Level 00 - B1 022 WC Lobby	-	85	-	30

General lighting and display lighting	Lumino	ous effic		
Zone name	Luminaire	Lamp	Display lamp	General lighting [W]
Standard value	60	60	22	
Level 00 - B1 024 Corridor		85	-	59
Level 00 - B1 025 Electrical	85	-	-	64
Level 00 - B1 026 Refuse	85		-	29
Level 00 - B1 027 Refuse Lobby		85	-	25
Level 00 - B1 028 Trench Intake	85	-	-	67
Level 00 - B1 029 Retail	-	85	60	1786
Level 00 - B1 030 M WC		85	-	41
Level 00 - B1 ST 001 Core B1	-	85	-	56
Level 00 - B1 ST Core B3	-	85	-	58
Level 00 - B2 007 Retail	-	85	60	1161
Level 00 - B2 008 Lobby/Corridor	-	85	-	104
Level 00 - B2 009 Retail	-	85	60	1793
Level 00 - B2 010 Scooters	85	-	-	31
Level 00 - B2 011 Corridor	-	85		125
Level 00 - B2 012 Lobby	-	85	-	22
Level 00 - B2 013 Airlock Lobby	-	85	-	11
Level 00 - B2 014 Lift Lobby	-	85	-	110
Level 00 - B2 015 Corridor	-	85	-	54
Level 00 - B2 016 Refuse	85	-	-	46
Level 00 - B2 017 Refuse Lobby	-	85	-	26
Level 00 - B2 018 Store	85	-	-	10
Level 00 - B2 019 Electrical Plant Room	85	-	_	48
Level 00 - B2 020 Corridor	-	85	-	120
Level 00 - Lounge		85	-	86
Level 00 - Stair	-	85	-	74
Level 00 - Stair	-	85	-	38
Level 00 - Stair	-	85	-	50
Level 00 - Stair	-	85	-	55
Level 00 - Stair	-	85	-	41
Level 00 - Stair Core A3	-	85	-	75
Level 00 - Stair Core A4		85	-	59
Level 00 - Stair Core A6	-	85	-	50
Level 01 - A1 105 Corridor	-	85	-	45
Level 01 - A1 106 Corridor	-	85	-	83
Level 01 - A2 106 Store	85	-	-	22
Level 01 - A2 107 Corridor		85	-	23
Level 01 - A2 108 Corridor	-	85		134
Level 01 - A2 109 Lift Lobby		85	-	40
Level 01 - A2 110 Residents Lockable Storage	85	-	-	157
Level 01 - A2 111 Lift Lobby	-	85	-	20
Level 01 - A3 108 Corridor		85	-	76
Level 01 - A3 109 Cinema		85	-	490
Level 01 - A3 110 AV Storage	85	-	-	32
and the first storage	30			

Page 7 of 20

General lighting and display lighting	Lumino	ous effic		
Zone name	Luminaire	Lamp	Display lamp	General lighting [W
Standard value	60	60	22	
Level 01 - A3 111 Lobby	-	85	-	25
Level 01 - A3 112 Changing Area	-	85	-	24
Level 01 - A3 113 Assisted Bathroom	-	85	-	32
Level 01 - A3 114 Hot Water Storage	85	-	-	18
Level 01 - A3 115 Corridor	-	85	-	205
Level 01 - A3 116 Lift Lobby	-	85	-	60
Level 01 - A3 117 Equipment Store	85	-	-	20
Level 01 - A3 118 Linen Store	85	-	-	11
Level 01 - A3 119 Food Holding	85	-	-	11
Level 01 - A3 120 WC	-	85	-	35
Level 01 - A3 121 Medical Store	85	-	-	9
Level 01 - A3 122 Nurse Office	85	-	-	98
Level 01 - A3 123 Corridor	-	85	-	103
Level 01 - A3 124 Care Takers Office	85	-	-	134
Level 01 - A3 125 Care Takers Workshop	85	-	-	420
Level 01 - A3 126 Corridor	-	85	-	72
Level 01 - A3 127 LV Switch	85	-	-	77
Level 01 - A3 128 Dis WC	-	85	-	36
Level 01 - A3 129 Female WC		85	-	54
Level 01 - A3 130 M WC		85		54
Level 01 - A3 132 LV Switch Room	85	00	-	94
		85		18
Level 01 - A3 133 WC Lobby	-	85	-	48
Level 01 - A3 133 WC Lobby		85	-	24
Level 01 - A3 134 Corridor	-		-	
Level 01 - A4 106 Corridor	-	85	-	155
Level 01 - A4 107 BoH	85	-	-	11
Level 01 - A4 108 BoH	85	-	-	11
Level 01 - A4 109 Lift Lobby	-	85	-	71
Level 01 - A4 110 Corridor	-	85	•	89
Level 01 - A4 111 Bar/Banquette Seating	-	85	-	194
Level 01 - A4 112 Unisex WC	-	85	-	75
Level 01 - A4 113 WC Lobby	-	85	-	24
Level 01 - A4 114 M WC	-	85	-	48
Level 01 - A4 115 Cinema/Theatre Bar	-	85	-	212
Level 01 - A5 108 BoH	85	-	-	12
Level 01 - B1 108 Electrical	85	-	-	11
Level 01 - B1 109 Corridor	-	85	-	194
Level 01 - B2 116 Corridor		85	-	41
Level 01 - B2 117 Corridor	-	85	-	111
Level 01 - B2 118 Corridor	-	85	-	176
Level 01 - B2 119 Corridor		85	-	18
Level 01 - B2 120 Corridor	-	85	-	91
Level 01 - B2 121 Corridor	-	85	-	24

General lighting and display lighting	Lumino	ous effic	acy [lm/W]	
Zone name	Luminaire	Lamp	Display lamp	General lighting [W]
Standard value	60	60	22	
Level 01 - Stair Core 01	-	85	-	39
Level 01 - Stair Core A2	-	85	-	46
Level 01 - Stair Core A3	-	85	-	59
Level 01 - Stair Core A4	-	85	-	46
Level 01 - Stair Core A5	-	85	-	43
Level 01 - Stair Core A6	-	85	-	45
Level 01 - Stair Core B1	-	85	-	46
Level 01 - Stair Core B2	-	85	-	60
Level 01 - Stair Core B3	-	85	-	47
Level 01 - Stair Core B4	-	85	-	43
Level 02 - A1 205 Corridor	-	85	-	89
Level 02 - A2 211 Sluice	85	-	-	14
Level 02 - A2 212 Cleaners Storage	85	-	-	13
Level 02 - A2 214 Lift Lobby	-	85	-	40
Level 02 - A2 215 Lobby/Corridor	-	85	-	188
Level 02 - A2 216 BoH	85			12
Level 02 - A2 217 BoH	85		-	17
Level 02 - A2 218 Corridor		85	-	64
Level 02 - A3 201 GCS Bedroom		85		65
Level 02 - A3 201 GCS Ensuite		85		27
Level 02 - A3 201 GCS Store	85	-	-	1
Level 02 - A3 202 GCS Bedroom	-	85	-	65
Level 02 - A3 202 GCS Ensuite		85		26
Level 02 - A3 202 GCS Store	85	-		1
Level 02 - A3 203 GCS Bedroom	-	85	-	65
Level 02 - A3 203 GCS Ensuite		85		26
Level 02 - A3 203 GCS Store	85	-	-	1
Level 02 - A3 204 GCS Bedroom	-	85	-	63
Level 02 - A3 204 GCS Ensuite	1.	85	-	26
Level 02 - A3 204 GCS Store	85	-	-	1
Level 02 - A3 205 GCS Bedroom	0.0	85		61
Level 02 - A3 205 GCS Ensuite	-	85	-	
Level 02 - A3 205 GCS Ensure	85	-	-	26
		85	-	64
Level 02 - A3 206 GCS Bedroom	-		-	-
Level 02 - A3 206 GCS Ensuite	05	85	-	28
Level 02 - A3 206 GCS Store	85	95	-	
Level 02 - A3 207 GCS Bedroom	-	85	-	64
Level 02 - A3 207 GCS Ensuite	95	85	-	27
Level 02 - A3 207 GCS Store	85	- 05	-	1
Level 02 - A3 208 GCS Bedroom		85	-	63
Level 02 - A3 208 GCS Ensuite	-	85	-	28
Level 02 - A3 208 GCS Store	85	-	-	2
Level 02 - A3 209 GCS Bedroom	-	85	-	61

Page 9 of 20

General lighting and display lighting	Lumine	ous effic		
Zone name	Luminaire	Lamp	Display lamp	General lighting [W
Standard value	60	60	22	
Level 02 - A3 209 GCS Ensuite	-	85	-	27
Level 02 - A3 209 GCS Store	85	-	-	1
Level 02 - A3 210 GCS Bedroom	-	85	-	61
Level 02 - A3 210 GCS Ensuite	-	85	-	27
Level 02 - A3 210 GCS Store	85	-	-	1
Level 02 - A3 211 GCS Bedroom	-	85	-	65
Level 02 - A3 211 GCS Ensuite	-	85	-	27
Level 02 - A3 211 GCS Store	85	-	-	1
Level 02 - A3 212 GCS Bedroom	-	85	-	63
Level 02 - A3 212 GCS Ensuite	-	85	-	27
Level 02 - A3 212 GCS Store	85	-	-	1
Level 02 - A3 213 Nurse Room	85	-	-	156
Level 02 - A3 214 GCS Ensuite	-	85	-	26
Level 02 - A3 214 Lobby	-	85	-	39
Level 02 - A3 215 Care Amenity Space	-	85	-	457
Level 02 - A3 216 BoH	85	-		11
Level 02 - A3 217 Kitchen/Dining		85	60	210
Level 02 - A3 218 Care Amenity Space		85	-	555
Level 02 - A3 219 Linen Store	85	-		10
Level 02 - A3 220 WC	-	85		38
Level 02 - A4 201 GCS Bedroom	-	85	-	59
Level 02 - A4 201 GCS Ensuite		85		26
Level 02 - A4 201 GCS Store	85	-		1
Level 02 - A4 202 GCS Bedroom		85		67
Level 02 - A4 202 GCS Ensuite	-	85	-	27
Level 02 - A4 202 GCS Store	85	-		1
Level 02 - A4 203 GCS Bedroom		85	-	63
Level 02 - A4 203 GCS Ensuite		85	-	27
Level 02 - A4 203 GCS Store	85	-	-	1
Level 02 - A4 204 GCS Bedroom		85		59
Level 02 - A4 204 GCS Store	85	-	-	1
Level 02 - A4 205 GCS Bedroom	-	85		59
Level 02 - A4 205 GCS Ensuite		85		26
Level 02 - A4 205 GCS Store	85	-	-	1
Level 02 - A4 206 GCS Bedroom	-	85		64
Level 02 - A4 206 GCS Ensuite		85	-	26
Level 02 - A4 206 GCS Store	85	-	-	1
Level 02 - A4 207 GCS Bedroom	-	85		65
Level 02 - A4 207 GCS Ensuite		85		26
Level 02 - A4 207 GCS Store	85	-		1
Level 02 - A4 208 GCS Bedroom	-	85		64
Level 02 - A4 208 GCS Ensuite		85		26
Level 02 - A4 208 GCS Ensure	85	-	-	1
ECTG VE - 174 EUU 000 01016	100			1.

Luminous efficacy [lm/W]			
Luminaire	Lamp	Display lamp	General lighting [W]
60	60	22	
-	85	-	64
-	85	-	27
85	-	-	1
-	85	-	60
-	85	-	26
85	-	-	1
-	85	-	66
-	85	-	26
85	-	-	1
-	85	-	62
-		-	26
85			1
	_		62
_			26
_			1
			66
			27
_	00		1
	05		
			68
_			27
-	_	-	1
		-	64
		-	25
	-	-	11
85	-	-	12
-		-	1331
-	85	-	80
85	-	-	11
-	85	-	45
-	85	-	65
-	85	60	210
85	-	-	12
85	-	-	43
-	85	-	194
-	85	-	41
-	85	-	111
-	85		176
85	-,	-	36
-	85	-	91
			1
-	85	-	24
	85 85		60
	Luminaire 60 85	Luminaire Lamp 60 60 - 85 85 - - 85	Luminaire Lamp Display lamp 60 60 22 - 85 - 85 - - 85 - - - 85 - <t< td=""></t<>

Page 11 of 20

General lighting and display lighting	Lumino	ous effic			
Zone name	Luminaire Lamp		Display lamp	General lighting [W	
Standard value	60	60	22		
Level 02 - Stair Core A2	-	85	-	42	
Level 02 - Stair Core A3	-	85	-	61	
Level 02 - Stair Core A4	-	85	-	47	
Level 02 - Stair Core A5		85	-	43	
Level 02 - Stair Core B1		85	-	46	
Level 02 - Stair Core B2	-	85	-	60	
Level 02 - Stair Core B3		85	-	47	
Level 02 - Stair Core B4		85	-	43	
Level 02 - Store Core A2	85	-	-	26	
Level 03 - A1 305 Corridor	-	85	-	89	
Level 03 - A2 307 Corridor		85		151	
Level 03 - A2 308 BoH	85	-	-	33	
Level 03 - A2 309 Lift Lobby		85	-	40	
Level 03 - A3 313 Lobby/Corridor		85	-	253	
Level 03 - A3 314 Corridor		85	-	133	
Level 03 - A3 315 Corridor		85	-	25	
Level 03 - A4 309 Corridor		85		253	
Level 03 - A4 310 BoH	85	-	-	11	
Level 03 - A4 311 BoH	85	-		11	
Level 03 - A5 308 BoH	85	-		12	
Level 03 - B1 308 Electrical	85	-	-	43	
Level 03 - B1 309 Corridor		85	-	194	
Level 03 - B2 316 Corridor		85		41	
Level 03 - B2 317 Corridor		85		111	
Level 03 - B2 318 Corridor		85	-	176	
Level 03 - B2 319 Electrical	85	-	-	36	
Level 03 - B2 320 Corridor		85	-	91	
Level 03 - B2 321 Corridor		85	-	24	
Level 03 - Lift Overrun	85	-	-	59	
Level 03 - Stair Core A1	-	85		39	
Level 03 - Stair Core A2		85	-	46	
Level 03 - Stair Core A3		85	-	61	
Level 03 - Stair Core A4		85		45	
Level 03 - Stair Core A5		85	-	43	
Level 03 - Stair Core A6		85	-	45	
Level 03 - Stair Core B1		85	-	46	
Level 03 - Stair Core B1		85		60	
Level 03 - Stair Core B3		85		47	
Level 03 - Stair Core B4		85		43	
Level 04 - A3 415 Lobby/Corridor		85		253	
Level 04 - A3 416 Corridor		85		199	
Level 04 - A4 409 Corridor		85	-	248	
Level 04 - A4 403 COITIGOI	*	00	-	240	

General lighting and display lighting	Lumino	ous effic			
Zone name	Luminaire Lamp I		Display lamp	General lighting [W	
Standard value	60	60	22		
Level 04 - A5 408 BoH	85	-	-	12	
Level 04 - B1 416 Corridor	-	85	-	350	
Level 04 - B1 417 BoH	85	-	-	10	
Level 04 - Stair Core A3	-	85	-	61	
Level 04 - Stair Core A4		85	-	45	
Level 04 - Stair Core A5	-	85	-	43	
Level 04 - Stair Core A6	-	85	-	45	
Level 04 - Stair Core B1	-	85	-	46	
Level 04 - Stair Core B3	-	85	-	47	
Level 05 - A3 515 Lobby/Corridor	-	85	-	253	
Level 05 - A3 516 Corridor	-	85	-	199	
Level 05 - A4 509 Corridor	-	85	-	248	
Level 05 - A4 510 BoH	85	-	-	11	
Level 05 - B1 516 Corridor	-	85		260	
Level 05 - Stair Core A3	-	85	-	61	
Level 05 - Stair Core A4		85	-	45	
Level 05 - Stair Core A6		85	-	45	
Level 05 - Stair Core B1		85	-	46	
Level 05 - Stair Core B3		85	-	47	
Level 06 - A3 615 Lobby/Corridor		85		253	
Level 06 - A3 616 Corridor		85	-	199	
Level 06 - A4 609 Corridor	-	85	-	248	
	05		-		
Level 06 - A4 610 BoH	85	-	-	11	
Level 06 - B1 616 Corridor	-	85	-	260	
Level 06 - Stair Core A3	-	85	-	61	
Level 06 - Stair Core A4	-	85	-	45	
Level 06 - Stair Core A6	-	85	-	45	
Level 06 - Stair Core B1	-	85	-	46	
Level 06 - Stair Core B3	-	85	-	47	
Level 07 - A3 715 Lobby/Corridor	-	85	-	263	
Level 07 - A3 716 Corridor	-	85	-	212	
Level 07 - A4 709 Corridor	-	85	-	257	
Level 07 - A4 710 BoH	85	-	-	12	
Level 07 - B1 716 Corridor	-	85	-	273	
Level 07 - Stair Core A3	-	85	-	63	
Level 07 - Stair Core A4	-	85	-	47	
Level 07 - Stair Core A6	-	85	-	47	
Level 07 - Stair Core B1		85	-	48	
Level 07 - Stair Core B3	-	85	-	50	
Level 08 - A3 815 Lobby/Corridor		85	-	256	
Level 08 - A3 816 Corridor		85	-	203	
Level 08 - A4 809 Corridor	-	85	-	251	
Level 08 - A4 810 BoH	85	-	-	11	

Page 13 of 20

General lighting and display lighting	Lumino	ous effic		
Zone name	Luminaire	Lamp	Display lamp	General lighting [W
Standard value	60	60	22	
Level 08 - B1 815 Corridor	-	85	-	79
Level 08 - B1 816 Corridor	-	85	-	264
Level 08 - Stair Core A3	-	85	-	62
Level 08 - Stair Core A4		85	-	46
Level 08 - Stair Core A6	-	85	-	45
Level 08 - Stair Core B1	-	85	-	46
Level 08 - Stair Core B3		85	-	48
Level 07 - B1 715 Corridor	-	85	-	78
Level 06 - B1 615 Corridor	-	85	-	78
Level 05 - B1 515 Corridor	-	85	-	78
Level 00 - Retail	-	67	15	2141
Level 01 - A5 107 Corridor	-	85	-	170
Level 02 - A5 210 Corridor		85	-	214
Level 03 - A5 307 Corridor	-	85	-	172
Level 04 - A5 407 Corridor	-	85	-	172

Criterion 3: The spaces in the building should have appropriate passive control measures to limit solar gains

Zone	Solar gain limit exceeded? (%)	Internal blinds used?	
Level 00 - A3 007 Gym	NO (-26.9%)	NO	
Level 00 - A3 009 Waiting Area	N/A	N/A	
Level 00 - A3 013 Therapy Room 01	N/A	N/A	
Level 00 - A3 016 Consultation Rooms 01	N/A	N/A	
Level 00 - A3 017 Unisex Therapy Room	N/A	N/A	
Level 00 - A3 018 Consultation Rooms 02	N/A	N/A	
Level 00 - A3 022 Swimming Pool	NO (-21.1%)	NO	
Level 00 - A4 009 Lounge	NO (-97.8%)	NO	
Level 00 - A4 011 Beauty Salon	YES (+17.5%)	NO	
Level 00 - A4 011 Multipurpose Room	NO (-45.5%)	NO	
Level 00 - A4 012 Multipurpose Room	NO (-35.6%)	NO	
Level 00 - A4 014 GM	N/A	N/A	
Level 00 - A4 015 Admin HR	YES (+16.1%)	NO	
Level 00 - A4 016 Sales Office	N/A	N/A	
Level 00 - A4 017 Sales Suite	NO (-2%)	NO	
Level 00 - A4 018 Main Entrance	YES (+82.2%)	NO	
Level 00 - A4 020 Office	YES (+7.8%)	NO	
Level 00 - B1 003 Resturant Office	NO (-41.6%)	NO	
Level 00 - B1 018 Resturant/Cafe/Bar	NO (-23%)	NO	
Level 00 - B1 029 Retail	NO (-53.4%)	NO	
Level 00 - B2 007 Retail	NO (-52%)	NO	
Level 00 - B2 009 Retail	NO (-66.4%)	NO	
Level 00 - Lounge	N/A	N/A	
Level 01 - A3 109 Cinema	N/A	N/A	
Level 01 - A3 122 Nurse Office	N/A	N/A	

Zone	Solar gain limit exceeded? (%)	Internal blinds used?
Level 01 - A3 124 Care Takers Office	N/A	N/A
Level 01 - A3 125 Care Takers Workshop	N/A	N/A
Level 01 - A4 111 Bar/Banquette Seating	N/A	N/A
Level 01 - A4 115 Cinema/Theatre Bar	N/A	N/A
Level 02 - A3 201 GCS Bedroom	NO (-76.8%)	NO
Level 02 - A3 202 GCS Bedroom	NO (-74.3%)	NO
Level 02 - A3 203 GCS Bedroom	NO (-73.4%)	NO
Level 02 - A3 204 GCS Bedroom	NO (-70.4%)	NO
Level 02 - A3 205 GCS Bedroom	NO (-77.3%)	NO
Level 02 - A3 206 GCS Bedroom	NO (-78.5%)	NO
Level 02 - A3 207 GCS Bedroom	NO (-78.6%)	NO
Level 02 - A3 208 GCS Bedroom	NO (-78.7%)	NO
Level 02 - A3 209 GCS Bedroom	NO (-59.5%)	NO
Level 02 - A3 210 GCS Bedroom	NO (-77.7%)	NO
Level 02 - A3 211 GCS Bedroom	NO (-79.7%)	NO
Level 02 - A3 212 GCS Bedroom	NO (-69.1%)	NO
Level 02 - A3 213 Nurse Room	NO (-50%)	NO
Level 02 - A3 215 Care Amenity Space	NO (-61.8%)	NO
Level 02 - A3 217 Kitchen/Dining	NO (-49.4%)	NO
Level 02 - A3 218 Care Amenity Space	N/A	N/A
Level 02 - A4 201 GCS Bedroom	NO (-70.1%)	NO
Level 02 - A4 202 GCS Bedroom	NO (-75.7%)	NO
Level 02 - A4 203 GCS Bedroom	NO (-76.6%)	NO
Level 02 - A4 204 GCS Bedroom	NO (-72.2%)	NO
Level 02 - A4 205 GCS Bedroom	NO (-74.4%)	NO
Level 02 - A4 206 GCS Bedroom	NO (-78.8%)	NO
Level 02 - A4 207 GCS Bedroom	NO (-81.7%)	NO
Level 02 - A4 208 GCS Bedroom	NO (-81.7%)	NO
Level 02 - A4 209 GCS Bedroom	NO (-82%)	NO
Level 02 - A4 210 GCS Bedroom	NO (-77.9%)	NO
Level 02 - A4 211 GCS Bedroom	NO (-77.4%)	NO
Level 02 - A4 212 GCS Bedroom	NO (-75%)	NO
Level 02 - A4 213 GCS Bedroom	NO (-74.5%)	NO
Level 02 - A4 214 GCS Bedroom	NO (-75.8%)	NO
Level 02 - A4 215 GCS Bedroom	NO (-35.1%)	NO
Level 02 - A4 216 GCS Bedroom	NO (-64.5%)	NO
Level 02 - A4 219 Care Amenity Space	N/A	N/A
Level 02 - A4 224 Kitchen/Dining	NO (-14.7%)	NO
Level 00 - Retail	NO (-57.4%)	NO

Criterion 4: The performance of the building, as built, should be consistent with the calculated BER

Separate submission

Criterion 5: The necessary provisions for enabling energy-efficient operation of the building should be in place

Separate submission

Page 15 of 20

EPBD (Recast): Consideration of alternative energy systems

Were alternative energy systems considered and analysed as part of the design process?	NO
Is evidence of such assessment available as a separate submission?	NO
Are any such measures included in the proposed design?	NO

Technical Data Sheet (Actual vs. Notional Building)

Building Global Parameters

Building Use

	Actual	Notional
Area [m²]	11996.6	11996.6
External area [m²]	11998.9	10482.4
Weather	LON	LON
Infiltration [m³/hm²@ 50Pa]	3	3
Average conductance [W/K]	4397.33	4470.82
Average U-value [W/m²K]	0.37	0.43
Alpha value* [%]	10.55	10

% Area	Building Type
5	A1/A2 Retail/Financial and Professional services
5	A3/A4/A5 Restaurants and Cafes/Drinking Est./Takeaways
	B1 Offices and Workshop businesses
	B2 to B7 General Industrial and Special Industrial Groups
	B8 Storage or Distribution
	C1 Hotels
7	C2 Residential Institutions: Hospitals and Care Homes
	C2 Residential Institutions: Residential schools
	C2 Residential Institutions: Universities and colleges
	C2A Secure Residential Institutions

Residential spaces 24 D1 Non-residential Institutions: Community/Day Centre

D1 Non-residential Institutions: Libraries, Museums, and Galleries

D1 Non-residential Institutions: Education

D1 Non-residential Institutions: Primary Health Care Building

D1 Non-residential Institutions: Crown and County Courts

D2 General Assembly and Leisure, Night Clubs, and Theatres

Others: Passenger terminals Others: Emergency services

Others: Miscellaneous 24hr activities

Others: Car Parks 24 hrs Others: Stand alone utility block

Energy Consumption by End Use [kWh/m²]

	Actual	Notional
Heating	4.62	6.05
Cooling	2.15	1.26
Auxiliary	6.24	5.56
Lighting	11.71	16.23
Hot water	14.66	14.08
Equipment*	32.5	32.5
TOTAL**	39.39	43.18

^{*} Energy used by equipment does not count towards the total for consumption or calculating emissions.
** Total is net of any electrical energy displaced by CHP generators, if applicable.

Energy Production by Technology [kWh/m²]

	Actual	Notional
Photovoltaic systems	0	0
Wind turbines	0	0
CHP generators	0	0
Solar thermal systems	0	0

Energy & CO₂ Emissions Summary

	Actual	Notional
Heating + cooling demand [MJ/m ²]	47.35	47.64
Primary energy* [kWh/m²]	117.89	121.41
Total emissions [kg/m²]	19.9	19.9

^{*} Primary energy is net of any electrical energy displaced by CHP generators, if applicable

^{*} Percentage of the building's average heat transfer coefficient which is due to thermal bridging

System '	Туре	Heat dem MJ/m2	Cool dem MJ/m2	Heat con kWh/m2	Cool con kWh/m2	Aux con kWh/m2	Heat SSEEF	Cool SSEER	Heat gen SEFF	Cool gen SEER
[ST] Oth	er loca	al room hea	ter - unfanr		rect or sto	rage electri			icity, [CFT] E	
Actu	ıal	4	0	1.3	0	0	0.84	0	1	0
Notic	onal	9.3	0	3	0	0	0.86	0		
[ST] Fan	coil s	ystems, [HS	3] Heat pun	p (electric)	: air source	e, [HFT] Ele	ctricity, [C	FT] Electric	ity	
Actu	ıal	33.2	92.5	3.4	9.2	21.8	2.75	2.8	3	3.6
Notic	onal	27.4	73.4	3	5.4	20.4	2.56	3.79		
[ST] Oth	er loca	al room hea	ter - unfanr	ed, [HS] D	irect or sto	rage electri	c heater, [H	IFT] Electri	icity, [CFT] E	lectricity
Actu	ıal	195.3	0	64.4	0	7.2	0.84	0	1	0
Notic	onal	213.3	0	68.7	0	8.6	0.86	0		
[ST] Cen	tral he	eating using	air distrib	ution, [HS]	Heat pump	(electric): a	air source,	[HFT] Elec	tricity, [CFT]	Electricit
Actu	ıal	488.5	0	44.2	0	25.9	3.07	0	3	0
Notic	onal	629.6	0	68.4	0	26.1	2.56	0		
[ST] No I	Heatin	g or Coolin	g							
Actu	ıal	0	0	0	0	0	0	0	0	0
	onal	0	0	0	0	0	0	0		

Key to terms

Heat dem [MJ/m2] = Heating energy demand Cool dem [MJ/m2] = Cooling energy demand

Heat con [kWh/m2] = Heating energy consumption Cool con [kWh/m2] = Cooling energy consumption Aux con [kWh/m2] = Auxiliary energy consumption

Heat SSEFF Cool SSEER = Heating system seasonal efficiency (for notional building, value depends on activity glazing class) = Cooling system seasonal energy efficiency ratio

Heat gen SSEFF Cool gen SSEER = Heating generator seasonal efficiency

= Cooling generator seasonal energy efficiency ratio

ST = System type HS = Heat source HFT = Heating fuel type = Cooling fuel type CFT

Key Features

The Building Control Body is advised to give particular attention to items whose specifications are better than typically expected.

Building fabric

Element	U _{i-Typ}	Ui-Min	Surface where the minimum value occurs*
Wall	0.23	0.15	LV00001E:Surf[5]
Floor	0.2	0.13	LV000093:Surf[1]
Roof	0.15	0.15	GR000007:Surf[1]
Windows, roof windows, and rooflights	1.5	1.4	GR000007:Surf[2]
Personnel doors	1.5	2.2	GR00000B:Surf[1]
Vehicle access & similar large doors	1.5	-	No Vehicle access doors in building
High usage entrance doors	1.5	-	No High usage entrance doors in building
U _{FTyp} = Typical individual element U-values [W/(m²K	()]	•	U _{I-Min} = Minimum individual element U-values [W/(m²K)]
* There might be more than one surface where the	minimum (J-value oc	curs.

Air Permeability	Typical value	This building
m3/(h.m2) at 50 Pa	5	3

Page 19 of 20 Page 20 of 20 SUSTAINABILITY ENERGY AND SUSTAINABILITY DOCUMENT - REV. 5 15

Appendix C: SAP 10 Calculation Worksheets.

The applicant shou	ıld complete all	I the light blue	cells including	information on the	e modelled units, the	e area per unit, the	number of units, the	baseline energy cor	nsumption figures	, the TER and the T	FEE.				SAP 2012 CO2	PERFORMANCE					S/	AP10 CO2 PERFORM	IANCE			
DOMESTIC E	NERGY CON	NSUMPTIO	N AND CO	ANALYSIS																						DEMAND
Unit identifier			Total area	VALIDAT	TION CHECK		REGULATED	ENERGY CONSUMP	TION PER UNIT (kWh p.a.) - TER WO	RKSHEET			REGUL	ATED CO2 EMISSIO	ONS PER UNIT (kgC	O2 p.a.)				REGULA	TED CO2 EMISSION	IS PER UNIT			Fabric Energy Efficiency (FEE
(e.g. plot number, dwelling type etc.)	Model total floor area (m²)	Number of units	represented by model (m²)	Calculated TER 2012 (kgCO2 / m2)	TER Worksheet TER 2012 (kgCO2 / m2)	Space Heating	Fuel type Space Heating	Domestic Hot Water	Fuel type Domestic Hot Water	Lighting	Auxiliary	Cooling	Space Heating	Domestic Hot Water	Lighting	Auxiliary	Cooling	2012 CO2 emissions (kgCO2 p.a.)	Space Heating	Domestic Hot Water	Lighting	Auxiliary	Cooling	SAP10 CO2 emissions (kgCO2 p.a.)	Calculated TER SAP10 (kgCO2 / m2)	Target Fabric Energy Efficienc (TFEE) (kWh/m ²
	TER Worksheet (Row 4)				TER Worksheet (Row 273)	TER Worksheet (Row 211)		TER Worksheet (Row 219)		TER Worksheet (Row 232)	TER Worksheet (Row 231)	N/A														
Type 01 Type 02 Type 03 Type 04 Type 05 Type 06 Type 07 Type 08 Type 10 Type 11 Type 11 Type 12 Type 15 Type 15	77.96 89.8 74.65 107.75 63.08 81.48 75.13 58.04 101.99 53.12 54.37 94.19 83.05 75.13 97.74		77.96 89.8 74.65 107.75 63.08 81.48 75.13 58.04 101.99 53.12 54.37 94.19 83.05 75.13 97.74	27.4 23.2 23.2 21.4 26.9 19.2 18.8 22.5 23.3 22.2 18.1 21.8 29.3 26.4	27.4 23.2 23.2 21.4 26.9 19.3 18.8 22.6 23.3 28.3 22.2 18.1 21.8 29.3 26.4	\$230.31008 4688.847185 3406.155845 5437.31785 3352.018375 2411.40816 1841.073725 1890.076975 5921.70153 2979.637385 1466.871485 2800.001995 33995.71418 5618.3222 6976.41391	Natural Gas	3649.848395 3796.460725 3632.973235 3960.47785 3612.039555 3760.95472 3693.377975 3329.38388 3924.281785 3193.8804 3269.70764 3883.811285 3751.00155 3598.516735 3832.15025	Natural Gas	338.6979 404.7683 336.8354 449.5675 284.3528 378.078 338.9462 274.4226 411.9274 252.4811 281.2292 423.1375 355.3436 332.4511 398.0381	75 75 75 84 75 75 75 75 75 75 75 75 75 75		1,130 1,013 736 1,174 724 521 398 408 1,279 644 317 605 777 1,214 1,507	788 820 785 855 780 812 798 719 848 690 706 839 810 777 828	176 210 175 233 148 196 176 142 214 131 146 220 184 173 207	39 39 39 44 39 39 39 39 39 39 39		2,133 2,082 1,734 2,302 1,695 1,568 1,410 1,309 2,379 1,503 1,208 1,702 1,810 2,202 2,580	1,098 985 715 1,142 704 506 387 397 1,244 626 308 588 755 1,180 1,465	766 797 763 832 759 790 776 699 824 671 687 816 885	79 94 78 105 66 88 79 64 96 59 66 99 83 77 93	17 17 17 20 17 17 17 17 17 17 17 17 17		1,961 1,894 1,574 2,096 1,548 1,402 1,259 1,178 2,181 1,373 1,078 1,520 1,643 2,030 2,380	25.2 21.1 19.5 24.5 17.2 16.8 20.3 21.4 25.8 19.8 16.1 19.8 27.0 24.4	55.3 43.3 39.9 41.5 40.0 28.6 24.9 31.1 47.4 27.4 27.7 38.6 60.0 57.2
	1,187	15	1,187	23.3		57,616	N/A	54,889	N/A	5,260	1,134	0	12,445	11,856	2,730	589	0	27,620	12,099	11,527	1,226	264	0	25,116	21.2	41.20

				he 'be green' energy	consumption figu	res and the 'be green	DER.																SAP 20	012 CO2 PERFORMA	NCE								SAP10 CO2 PER	FORMANCE			
STIC ENERGY	CONSUMP	TION AND	O2 ANALYSIS		1																																
ntifier Model	total	Total ar		TION CHECK	Space Heating	Fuel type	Domestic Hot Wate		Space Heating	REGULATED ENERS	GY CONSUMPTION F	ER UNIT (kWh p.a.) - '	Space and		Total Electricity	Electricity	Lighting	Auxiliary	Cooling	Space Heating	Domestic Hot		REGULATED CO2	EMISSIONS PER UN	IT (kgCO2 p.s.) Lighting	Auxiliary	Cooling	2012 CO2	Space Heating	Domestic Hot			ULATED CO2 EMI	ISSIONS PER UNIT	Auxiliary	Cooling	SAP10 CO2
plot floor a dwelling (m ³ etc.)	area		DER 2012	DER 2012 (kgCO2 / m2)			(Heat Source 1)			Space Heating		Domestic Hot Wate	P Domestic Hot Water from CHP		generated by CHF)	(- generated by renewable (-)	ugnong	Authory	Cooling	Space nearing	Water	and DHW from CHP	generated by CHP	generated by renewable	Lignong	Autoracy	Cooling	emissions (kgCO2 p.a.)	Space Heating	Water	and DHW from CHP	generated by gr	nerated by enewable	Lighting	Austrary	-	emissions (kgC02 p.a.) (k
				(Row 384)	DER Sheet (Row 307b + (Row 367b x		DER Sheet (Row 310b + (Row 367b x 0.01))	Select fuel type	(Row 307c + (Row 367c x	Select fuel type	If applicable DER Sheet (Row 310c + (Row 367c x 0.01)	Select fuel type	((Row 307a + 310a)		If applicable DER Sheet ((Row 307a + 310 × (Row 361 + 362	f applicable DER Sheet a) Row 380	DER Sheet Row 332	DER Sheet (Row 313 + 331)	DER Sheet Row 315			if applicable	if applicable	if applicable							if applicable	if applicable if	applicable				
77.5	96 1	77.96	28.9	28.9	0.01)) 2669.5965		1777.9262	Grid Electricity	0.01]]	Grid Electricity		Grid Electricity	[Row 362 x 0.01]]			-682.2596	338.6979	232.0723	0	1,386	923			-354	176	120		2,250	622	414			-159	79	54		1,010
#9.1 74.6 107.	55 1	89.8 74.65 107.75	20.8	20.9 20.9 18.3	2933.5358 2396.8158 2134.0068	Grid Electricity	1856.5797 1750.5956 1930.8183	Grid Electricity Grid Electricity Grid Electricity		Grid Electricity Grid Electricity Grid Electricity		Grid Electricity Grid Electricity Grid Electricity				-785.8939 -656.351 -949.9817	393.4926 330.2227 437.5624	213.0179 177.0801 255.5978	0	1,004 725 1,108	964 909 1,002			-408 -341 -493	204 171 227	111 92 133	0	1,874 1,556 1,976	451 325 497	433 408 450			-183 -153 -221	92 77 102	50 41		841 699 887
63.6 82.4	08 2	63.08 81.48	23.1	23.1	2320.4469 722.85		1609.5155	Grid Electricity Grid Electricity		Grid Electricity Grid Electricity		Grid Electricity Grid Electricity				-552.7166 -716.8043	284.4092	147.1814 193.2818	0	685 375	835 936			-287 -377	148	76 100		1,458 1,231	308 168	375 420			-129	66	34		654 552
75.2 58.6	23 2	75.13 58.04	15.3	15.3 18.4		Grid Electricity		Grid Electricity Grid Electricity		Grid Electricity Grid Electricity		Grid Electricity Grid Electricity				-656.353 -509.5356	332.1618 268.3526	178.2187 135.4218	0	312 318	911 806			-341 -264	172 139	92 70	0	1,147	140 143	409 362			-153 -119	77 63	42 32		515 480
101.1 53.2	12 1	101.91 53.12	28.6	23.2 28.6	2889.8837 2520.5928	Grid Electricity	1497.3535	Grid Electricity Grid Electricity		Grid Electricity Grid Electricity		Grid Electricity Grid Electricity				-898.1645 -466.3546	408.4973 247.2574	241.9343 123.9422	0	1,500 789	993 777			-466 -242	212 128	126 64	0	2,365 1,517	673 354	446 349			-209 -109	95 58	56 29	0	1,062 681
54.3 94.3	19 1	54.37 94.19	16.5	17.1 16.5	352.8203 2320.2522	Grid Electricity	1878.5554	Grid Electricity Grid Electricity		Grid Electricity Grid Electricity		Grid Electricity Grid Electricity				-874.9908 -829.0749	273.0517 411.0345	225.8588 223.4326	0	183 680	785 975			-247 -430	142 213	55 116	0	929 1,554	82 305	352 438			-111 -193	64 96	30 52		417 698
83.0 75.2	23 2	83.05 75.13	30.8	21.2 30.8		Grid Electricity		Grid Electricity Grid Electricity		Grid Electricity Grid Electricity		Grid Electricity Grid Electricity				-725.4405 -656.351	355.3436 329.0356	297.006 278.2287	0	908 1,483	942 911			-377 -341	184 171	102 92	0	1,760 2,317	407 666	423 409			-169 -153	83 77	46 42		790 1,040
97.7	74 1	97.74	28.9	28.9	3782.688	Grid Electricity	1893.7995	Grid Electricity		Grid Electricity		Grid Electricity				-854.9835	397.7348	231.8527	0	1,963	983			-444	206	120	0	2,829	881	441			-199	93	54	۰	1,270
1,11	87 15	1,187	21.6		25,854	N/A	26,304	N/A		N/A	۰	N/A		N/A		-10,415	5,174	2,855		13,418	13,652	0	0	-5,406	2,685	1,482	0	25,832	6,024	6,129	0	0	-2,427	1,206	665	0	11,597

SUSTAINABILITY ENERGY AND SUSTAINABILITY DOCUMENT - REV. 5 16

Appendix D: Calculation of Energy from LZC Sources.

Domestic

BE LEAN (Nos	from DER \	Worksheet)
		kWh/year
URN	TFA (m2)	Total Energy Used (238)
Type 01	77.96	5018.2919
Type 02	89.8	4396.625
Type 03	74.65	3654.7142
Type 04	107.75	4758.0043
Type 05	63.08	3361.5529
Type 06	81.48	3088.0273
Type 07	75.13	2866.8374
Type 08	58.04	2570.761
Type 09	101.99	5454.0727
Type 10	53.12	3389.1449
Type 11	54.37	2264.5414
Type 12	94.19	3823.1736
Type 13	83.05	4116.3545
Type 14	75.13	5119.8413
Type 15	97.74	6305.075

Modelled Floor Area	1,187	60187.0174
Total Resi Floor Area	22,294	1129957.6780

Be Gre	Be Green (Nos from DER Worksheet)										
	kWh/year										
Total Delivered Energy (238)	Elec produced from PV (233)	Elec produced by other renewables									
4336.0323	682.2596	0									
3610.7311	785.8939	0									
2998.3632	656.351	0									
3808.0226	949.9817	0									
2808.8363	552.7166	0									
2371.223	716.8043	0									
2210.4864	656.351	0									
2061.2254	509.5356	0									
4555.9082	898.1645	0									
2922.7903	466.3546	0									
1789.5506	474.9908	0									
2994.0987	829.0749	0									
3390.914	725.4405	0									
4463.4903	656.351	0									
5450.0915	854.9835	0									

Total Energy Renewables provides kWh/year
682.2596
785.8939
656.351
949.9817
552.7166
716.8043
656.351
509.5356
898.1645
466.3546
474.9908
829.0749
725.4405
656.351
854.9835
10415.2535

% of Energy Requirements
13.60%
17.87%
17.96%
19.97%
16.44%
23.21%
22.89%
19.82%
16.47%
13.76%
20.98%
21.69%
17.62%
12.82%
13.56%
17.30%

Non-Domestic

				Ener	gy kWh/m2/year			
URN	TFA (m2)	Heating	Cooling	Auxiliary	Lighting	Hot Water	Total Energy	Energy provided by Heat Pump
Non Residential Lean	11996.6	4.620	2.150	6.240	11.710	14.660	39.38	16.2315

% of Energy Requirements
41.22%

	TFA (m2)	% of Energy Requirements
Total Residential	22,294	17.30%
Total Non-Residential	11,997	41.22%

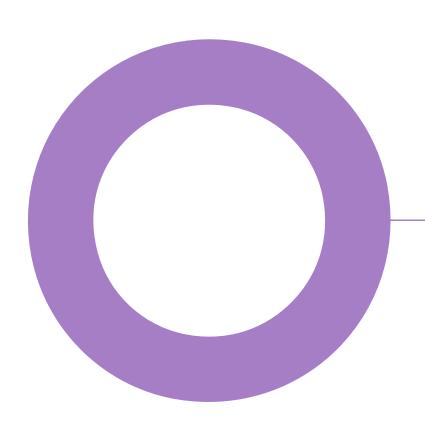
Total Percentage of Energy	25.67%
Requirement from LZCs	23.07%

TAINABILITY

DOLLAR AND SUSTAINABILITY

17

SUSTAINABILITY ENERGY AND SUSTAINABILITY DOCUMENT - REV. 5


Appendix E: BREEAM UK New Construction 2018 Pre-Assessment Documents.

Guild Living Epsom. Epsom. Guild Living.

SUSTAINABILITY

BREEAM UK NEW CONSTRUCTION 2018 PRE-ASSESSMENT REPORT APPROACH TO MULTI RESIDENTIAL AREAS FOR GUILD LIVING EPSOM. REVISION 0 – 15 JANUARY 2021

GUILD LIVING EPSOM

GUILD LIVING

SUSTAINABILITY

BREEAM UK NEW CONSTRUCTION 2018 PRE-ASSESSMENT REPORT – REV. 0 2

Audit Sheet.

Rev.	Date	Description	Prepared	Verified
0	15/01/2021	Issue for Planning	AB	ML

This document has been prepared for Guild Living only and solely for the purposes expressly defined herein. We owe no duty of care to any third parties in respect of its content. Therefore, unless expressly agreed by us in signed writing, we hereby exclude all liability to third parties, including liability for negligence, save only for liabilities that cannot be so excluded by operation of applicable law. The consequences of climate change and the effects of future changes in climatic conditions cannot be accurately predicted. This report has been based solely on the specific design assumptions and criteria stated herein.

SUSTAINABILITY
BREEAM UK NEW CONSTRUCTION
2018 PRE-ASSESSMENT REPORT REV. 0

BREEAM Audit box.

Assessment	Multi Residential: Fully Fitted
BRE registration number	Multi Residential: (TBC)
Licensed assessor	Alexandra Bryant
BREEAM scheme	BREEEAM UK New Construction 2018.
BREEAM scheme version	Issue 3.0
Assessment Stage	Pre-Assessment

BREEAM Credit filtering box.

Building type and sub-group	Multi Residential (Care Home)
Building floor area	>500-<10,000m ²
Building services (heating)	Direct Electric
Building services (cooling)	Other cooling system
Building services (DHW system)	ASHP with electric top-up
Building services (controls)	Standard times/controls
Commercial cold storage systems	N/A
Laboratory (type, area and size)	N/A
Laboratory containment level	N/A
Fume cupboards / containment devices	N/A
Unregulated water uses	Yes

SUSTAINABILITY
BREEAM UK NEW CONSTRUCTION
2018 PRE-ASSESSMENT REPORT REV. 0

Contents.

Audit Sheet.	2
BREEAM Audit box.	3
BREEAM Credit filtering box.	3
1. Executive Summary.	5
2. Assessment Details.	6
2.1 Introduction	6
2.2 Assessment Type	6
2.3 Assessment Rating	6
2.4 Pre-Assessment	ϵ
3. Project Team Members.	6
4. Summary Score Sheet.	7
5. Early Action Credits.	7
6. Conclusion.	9

GUILD LIVING EPSOM

GUILD LIVING

SUSTAINABILITY

BREEAM UK NEW CONSTRUCTION 2018 PRE-ASSESSMENT REPORT – REV. 0

1. Executive Summary.

This report provides an outline approach to the BREEAM 2018 UK New Construction (NC) Pre-Assessment strategy for the proposed Multi Residential commercial areas included in the Guild Living Epsom development.

In order to demonstrate compliance with Epsom and Ewell Borough Council, Core Strategy (2007) Policy CS6 and Guild Living Brand Standards, this Pre-Assessment will outline a route for each of the proposed areas to achieve 'BREEAM 'Very Good' (min. 55%>).

The current anticipated baseline score for the proposed Guild Living Epsom Multi Residential areas are as follows:

- Multi Residential - Baseline score / rating: 64.4% (BREEAM 'Very Good').

All assessments are currently exceeding the minimum requirements for BREEAM 'Very Good' rating by 9.00%. We recommend a margin of at least 5%–7% is maintained above the minimum required score at this stage in order to secure the target rating, as well as consider potential design changes and constraints identified during the construction stage.

Figure 1 summarises a visual representation of the current anticipated 'baseline' scores for each assessment, relative to the minimum required score for each BREEAM rating threshold.

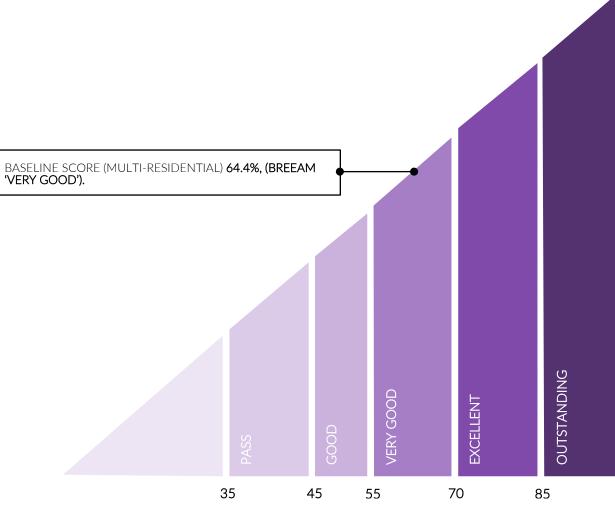


Figure 1: BREEAM 2018 Scale and Anticipated Performance Scores.

SUSTAINABILITY

BREEAM UK NEW CONSTRUCTION 2018 PRE-ASSESSMENT REPORT -REV 0

2. Assessment Details.

2.1 Introduction

This report provides an outline approach to the BREEAM UK New Construction 2018 Pre-Assessment strategy for the proposed commercial areas included in the Guild Living Epsom development.

2.2 Assessment Type

The Multi Residential areas will be assessed under the BREEAM UK New Construction (NC) 2018, Fully Fitted criteria.

Figure 2 below identifies the alignment with MEP level of fit out and the BREEAM Assessment methodologies being completed.

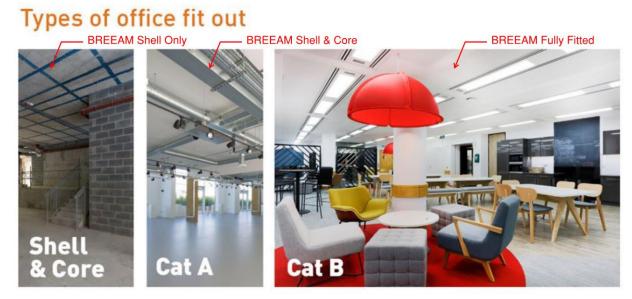


Figure 2 BREEAM Assessment Type Definitions

2.3 Assessment Rating

In line with Epsom and Ewell Borough Council Core Strategy (2007), Policy CS6 and Guild Living Brand Standards, the Commercial areas will be designed to achieve a BREEAM UK New Construction (NC) 2018 'Very Good' rating (55%>) with an aspiration for 'Excellent' where feasible.

2.4 Pre-Assessment

The Pre-Assessment strategy has been put together for the Multi Residential areas setting out a route to achieve BREEAM 'Very Good' (55%>), as well as highlight the key stages evidence was to be received by, additional appointments, and the design team members responsible for each credit issue.

Credits currently included in the credit score will need to be reviewed by the design team and each team member will be expected to provide feedback regarding credits under their responsibility, identifying any relevant issues. Once comments have been raised by the project team, the report and the predicted scores will be updated.

Currently the following predicted scores have been calculated based upon experience with similar buildings and Hoare Lea's current understanding of the proposed development:

- Multi Residential - Baseline score / rating: 64.4% (BREEAM 'Very Good').

All mandatory and minimum standards for the BREEAM 'Very Good' rating have been incorporated within the assessment strategy for the targeted baseline score.

3. Project Team Members.

Discipline	Organisation
Developer/Client	Guild Living
Project Manager	Cast Consultancy
Quantity Surveyor Team/Cost Consultant	Cast Consultancy
Architect	Marchese Partners
Principle Designer	Orsa
Building Services Consultant	Hoare Lea LLP
Civils / Drainage / Structural Consultant	Hydrock
Vertical Transportation Consultant	Hoare Lea LLP
Security Consultant	Hoare Lea LLP
Daylighting and Glare Control Consultant	Avison Young
Energy Assessor (Part L)	Hoare Lea LLP
Landscape Architect	Andy Sturgeon
Ecologist	Arup
Acoustician	Hoare Lea LLP
Planning Consultant	QED
Transport Consultant	Mayer Browne

GUILD LIVING EPSOM

GUILD LIVING

SUSTAINABILITY

BREEAM UK NEW CONSTRUCTION 2018 PRE-ASSESSMENT REPORT -REV 0

4. Summary Score Sheet.

The summary table below highlights the list of targeted credits for the current BREEAM UK NC 2018 Pre-Assessment. Mandatory credits to achieve a 'Very Good' rating and above are highlighted by **(M)**. Additional mandatory credits for an 'Excellent' or 'Outstanding' rating is highlighted by **(Me)** and **(Mo)** respectively. Exemplary (innovation) credits are written in brackets, e.g. (+1).

Table 1: BREEAM Target Summary.

Category	Issue	Multi Residential: Fully Fitted		
		Available	Targeted	
Management	Man 01: Project brief and design	4	2	
	Man 02: Lifecycle cost and service life planning	4	4	
	Man 03: Responsible construction practices (Me), (Mo)	6 (+1)	6 (+1)	
	Man 04: Commissioning and handover (Me), (Mo)	4	3	
	Man 05: Aftercare (Me), (Mo)	3	2	
Health &	Hea 01: Visual comfort	4 (+2)	4	
Wellbeing	Hea 02: Indoor air quality	4 (+1)	2	
	Hea 04: Thermal comfort	3	3	
	Hea 05: Acoustic performance	4	3	
	Hea 06: Safety	1 (+1)	1	
	Hea 07 Safe and healthy surroundings	2	2	
Energy	Ene 01: Reduction of energy use and CO_2 emissions (M_e) (M_o)	9	0	
	Ene 02: Energy monitoring (M) (M _e) (M _o)	2	2	
	Ene 03: External lighting	1	1	
	Ene 04: Low carbon design	3	0	
	Ene 05: Energy efficient cold storage	N/A	N/A	
	Ene 06: Energy efficient transportation systems	2	2	
	Ene 07 Energy efficient laboratory systems	N/A	N/A	
	Ene 08: Energy efficient equipment	2	0	
Transport	Tra 01: Transport assessment and travel plan	2	2	
	Tra 02: Sustainable transport measures	10	5	
Water	Wat 01: Water consumption (M) (M _e) (M _o)	5 (+1)	3	
	Wat 02: Water monitoring (M) (M _e) (M _o)	1	1	
	Wat 03: Water leak detection and prevention	1	1	
	Wat 04: Water efficient equipment	1	1	
Materials	Mat 01: Environmental impacts from construction products - Building life cycle assessment	7 (+3)	0	

Multi Residential: Fully Fitted Category Issue Available Targeted 1 Mat 02: Environmental impacts from construction products Mat 03: Responsible sourcing of materials (M) (M_e) (M_o) 4 (+1) 3 1 Mat 05: Designing for durability and resilience 1 0 Mat 06: Material efficiency 1 4 5 (+1) Waste Wst 01: Construction waste management (M_o) Wst 02: Use of recycled and sustainably sourced 1 (+1)0 aggregates 1 Wst 03: Operational waste (M_e), (M_o) Wst 04 Speculative floor and ceiling finishes N/A N/A Wst 05: Adaptation to climate change 1 (+1) 1 2 2 Wst 06: Design for disassembly and adaptability LE 01: Site selection 2 2 and Ecology LE 02: Identifying and understanding the risks and 2 2(+1)opportunities for the project 3 LE 03: Managing negative impacts on ecology 3 4 (+1) 3 LE 04: Change and enhancement of ecological value 2 2 LE 05: Long term ecology management and maintenance Pol 01: Impact of refrigerants 3 2 2 1 Pol 02: Local air quality 5 4 Pol 03: Flood and surface water management Pol 04: Reduction of night-time light pollution 1 1 Pol 05: Reduction of noise pollution 1 1 1 Inn 01: Approved Innovation and Exemplary Level Credits 10 Innovation Targeted weighted score: 64.4% Totals BREEAM Very Good (55%) Targeted weighted Rating

5. Early Action Credits.

Under the BREEAM Assessment there are a number of credits that are time critical and require early action by the design team in order for the credits to be achieved. For these credits, the actions are required prior to end of RIBA Stages 1 and 2.

It is advised that the Design Team fully to review the actions required in Tables 2 and 3 below to understand the required evidence needed to be demonstrated prior to the completion of RIBA Stages 1 and 2.

GUILD LIVING

SUSTAINABILITY
BREEAM UK NEW CONSTRUCTION
2018 PRE-ASSESSMENT REPORT REV. 0

Table 2: BREEAM NC 2018 RIBA Stage 1 Evidence Requirements

Credit Issues	RIBA Stage 1 Actions	Owner	Comment
LE 02 Ecological risks and opportunities	A Suitably Qualified Ecologist (SQE) carries out a survey and evaluation (see Methodology) for the site early enough to influence site preparation works, layout and, where necessary, strategic planning decisions. The SQE's survey and evaluation determines the site's ecological baseline (see Definitions), including: - Current and potential ecological value and condition of the site and related areas within the Zone of Influence. - Direct and indirect risks to current ecological value from the project. - Capacity and feasibility for enhancement of the site's ecological value and, where relevant, areas within the Zone of Influence.	Arup	Credit partially complete. Arup have provided Ecological Impact Assessment (EIA) to support the planning application, with a Preliminary Ecological Appraisal and Bat Report appended

Table 3 BREEAM NC 2018 RIBA Stage 2 Evidence Requirements

Credit Issues	RIBA Stage 2 Actions	Owner	Comment	
Man 01 Project brief and design	Prior to completion of the Concept Design, the project delivery stakeholders meet to identify and define for each key phase of project delivery: (a) Roles; (b) Responsibilities, and (c) Contributions. The project team demonstrates how the project delivery stakeholders' contributions and the consultation process outcomes influence the following: (a) Initial Project Brief; (b) Project Execution Plan; (c) Communication Strategy; and (d) Concept Design.	Morgan Sindall	Credit partially complete. DAS Report to be provided alongside early stage meeting minutes, and Public Consultation	
	Prior to completion of the Concept Design, the design team consult with all interested parties on matters that cover the minimum consultation content. Demonstrate how the stakeholder contributions and consultation exercise outcomes influence the Initial Project Brief and Concept Design.		Documents.	
Man 02: Life cycle costing and service life planning	life cycle life cycle costing for construction procurement' PD 156865: 2008(6). The plan informs the client on: (a) Future		Credit Outstanding. Multi Residential report to be commissioning confirming the cost analysis assessment for these areas.	

Credit Issues	RIBA Stage 2 Actions	Owner	Comment
	years); and (b) Includes service life, maintenance and operation cost estimates.		
Hea 06 Security	Appoint a Suitability Qualified Security Specialist (SQSS) to conduct a Security Needs Assessment (SNA).	Hoare Lea Security	Credit partially complete. HL Security have provided SNA outlining the recommendations identified for the scheme. HL Security to confirm if recommendations have changed following recent changes on the scheme. Credit to be secured at Stage 4.
Tra 01 Transport assessment and travel plan	A site-specific transport assessment AND draft travel plan are provided demonstrating full compliance with Tra 01 issue.	Mayer Browne	Credit partially complete. Transport Assessment and Travel Plan documentation have been provided by consultant confirming compliance. Credit to be secured at Stage 4.
Wst 01 Construction waste management	Complete a pre-demolition audit of any existing buildings, structures or hard surfaces being considered for Demolition*. *If Demolition is not taking place at RIBA Stage 2 this documentation can be accepted at a later stage.	Demolition Contractor	Credit preliminary awarded. Due to appointment timescales, requirement has been captured within Principal Contractors (Demo + Construction) prelims document.
Wst 05 Adaptation to climate change	Conduct a climate change adaptation strategy appraisal. The assessment covers the installation of building services and renewable systems, as well as structural and fabric resilience aspects.	Marchese Partners + Hydrock + Hoare Lea LLP	Credit Outstanding. Wst 05 Proforma will be required to be provided by the design team detailing the structural and fabric resilience aspects.
Wst 06 Design for disassembly and adaptability	Conduct a study to explore the ease of disassembly and the functional adaptation potential of different design scenarios. Develop recommendations or solutions based on the study during or prior to Concept Design, that aim to enable and facilitate disassembly and functional adaptation.	Marchese Partners Hydrock + Hoare Lea LLP	Credit Outstanding. Wst 06 Proforma to be provided detailing the ease of disassembly and the functional adaptation potential of different design Scenarios.
LE 02 Ecological risks and opportunities	The project team liaise and collaborate with representative stakeholders early enough to influence key planning decisions to: (a) Identify the optimal ecological outcomes for the site; and (b) Identify, appraise and select measures	Arup	Credit partially complete. Arup have been appointed to undertake LE 02 and LE 03 criteria within their package of works. Full package to be

SUSTAINABILITY

BREEAM UK NEW CONSTRUCTION 2018 PRE-ASSESSMENT REPORT – REV. 0

Credit Issues	RIBA Stage 2 Actions	Owner	Comment
	to meet the optimal ecological outcomes for the site in line with the mitigation hierarchy of action, according to the route being used.		provided post planning submission.
LE 03 Managing impacts on ecology	Further planning to avoid and manage negative ecological impacts on-site is carried out early enough to influence the concept design and design brief as well as site preparation planning.		

6. Conclusion.

Based upon an initial credit review, it is anticipated that the assessed areas can achieve a targeted score well within the BREEAM 'Very Good' (55%>) benchmark rating. Currently the targeted scores for each assessment are as follows:

- Multi Residential - Baseline score / rating: 64.4% (BREEAM 'Very Good').

Following from this Pre-Assessment issue it is advised all early stage credits are fully reviewed and actioned as soon as possible in order to secure the strategy moving forward.

Figures 3 and 4 below provide a visual representation for the scores targeted and unachievable credit scores currently identified for each assessment.



Figure 3 BREEAM Performance Summary and Targeted Credits.

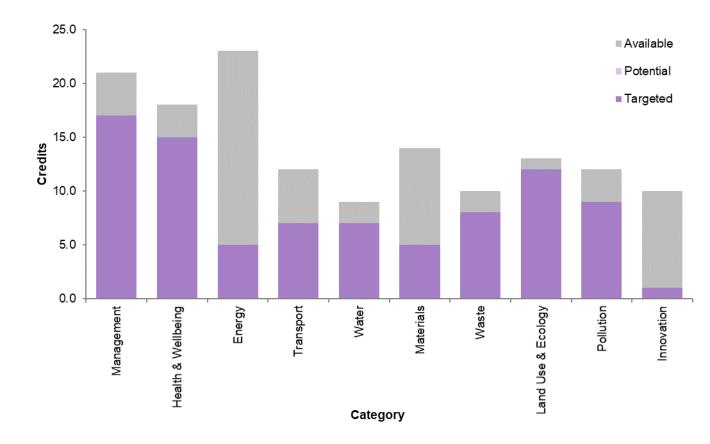
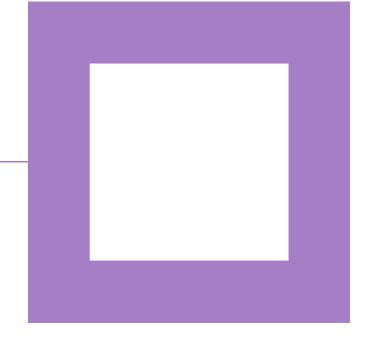


Figure 4 BREEAM Performance Summary and Targeted Credits: Multi Residential assessment (Bar Representation)

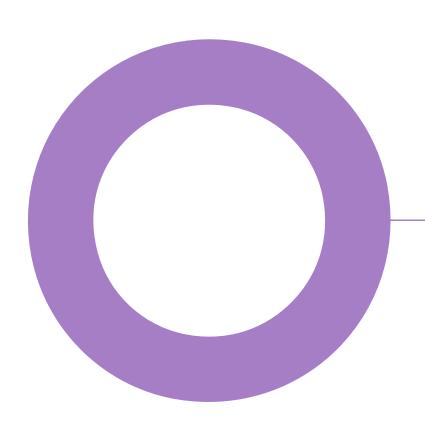

ALEXANDRA BRYANT

SUSTAINABILITY ASSESSOR

+44 1202 654 618 alexandrabryant@hoarelea.com

HOARELEA.COM

Enterprise House Old School Close Ferndown Bournemouth BH22 9UN England



Guild Living Epsom. Epsom. Guild Living.

SUSTAINABILITY

BREEAM UK NEW CONSTRUCTION 2018 PRE-ASSESSMENT REPORT APPROACH TO RETAIL & NURSERY AREAS FOR GUILD LIVING EPSOM. REVISION 3 – 15 JANUARY 2021

GUILD LIVING EPSOM

GUILD LIVING

SUSTAINABILITY

BREEAM UK NEW CONSTRUCTION 2018 PRE-ASSESSMENT REPORT – REV. 3

Audit Sheet.

Rev.	Date	Description	Prepared	Verified
0	20/12/2019	Issue for Planning	AB	RC/GB
1	31/01/2020	Stage 2 Issue	AB	RC/GB
2	30/03/2020	Issue for Planning	AB	RC/GB
3	15/01/2021	Update for planning.	AB	ML

This document has been prepared for Guild Living only and solely for the purposes expressly defined herein. We owe no duty of care to any third parties in respect of its content. Therefore, unless expressly agreed by us in signed writing, we hereby exclude all liability to third parties, including liability for negligence, save only for liabilities that cannot be so excluded by operation of applicable law. The consequences of climate change and the effects of future changes in climatic conditions cannot be accurately predicted. This report has been based solely on the specific design assumptions and criteria stated herein.

2

SUSTAINABILITY
BREEAM UK NEW CONSTRUCTION
2018 PRE-ASSESSMENT REPORT REV. 3

BREEAM Audit box.

Assessment	Retail: Shell Only Nursery: Shell Only
BRE registration number	Retail: BREEAM-0080-4120 Nursery: BREEAM-0080-4146
Licensed assessor	Alexandra Bryant
BREEAM scheme	BREEEAM UK New Construction 2018.
BREEAM scheme version	Issue 3.0
Assessment Stage	Pre-Assessment

BREEAM Credit filtering box.

Building type and sub-group	Retail + Nursery areas.
Building floor area	<500m ²
Building services (heating)	Other type of heating system – to be installed by tenant.
Building services (cooling)	Other type of heating system – to be installed by tenant.
Building services (DHW system)	ASHP
Building services (controls)	Standard times/controls
Commercial cold storage systems	N/A
Laboratory (type, area and size)	N/A
Laboratory containment level	N/A
Fume cupboards / containment devices	N/A
Unregulated water uses	Yes

SUSTAINABILITY
BREEAM UK NEW CONSTRUCTION
2018 PRE-ASSESSMENT REPORT REV. 3

Contents.

Audit Sheet.	2	
BREEAM Audit box.	3	
BREEAM Credit filtering box.	3	
1. Executive Summary.	5	
2. Assessment Details.	ć	
2.1 Introduction	6	
2.2 Assessment Type	6	
2.3 Assessment Rating	6	
2.4 Pre-Assessment	6	
3. Project Team Members.	ć	
4. Summary Score Sheet.	7	
5. Early Action Credits.	7	
6. Conclusion.	10	

SUSTAINABILITY

BREEAM UK NEW CONSTRUCTION 2018 PRE-ASSESSMENT REPORT – REV. 3

1. Executive Summary.

This report provides an outline approach to the BREEAM 2018 UK New Construction (NC) Pre-Assessment strategy for the proposed commercial (retail and nursery) areas included in the Guild Living Epsom development.

In order to demonstrate compliance with Epsom and Ewell Borough Council, Core Strategy (2007) Policy CS6 and Guild Living Brand Standards, this Pre-Assessment will outline a route for each of the proposed areas to achieve 'BREEAM 'Very Good' (min. 55%>).

The current anticipated baseline score for the proposed Guild Living Epsom commercial areas are as follows:

- Retail Baseline score / rating: 64.5% (BREEAM 'Very Good'); and
- Nursery Baseline score / rating: 64.5% (BREEAM 'Very Good').

All assessments are currently exceeding the minimum requirements for BREEAM 'Very Good' rating by 9.00%. We recommend a margin of at least 5%–7% is maintained above the minimum required score at this stage in order to secure the target rating, as well as consider potential design changes and constraints identified during the construction stage.

Figure 1 summarises a visual representation of the current anticipated 'baseline' scores for each assessment, relative to the minimum required score for each BREEAM rating threshold.

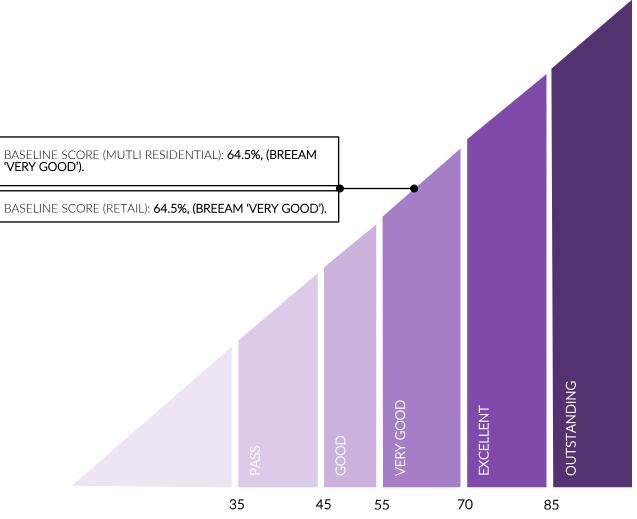


Figure 1: BREEAM 2018 Scale and Anticipated Performance Scores.

SUSTAINABILITY

BREEAM UK NEW CONSTRUCTION 2018 PRE-ASSESSMENT REPORT -REV 3

2. Assessment Details.

2.1 Introduction

This report provides an outline approach to the BREEAM UK New Construction 2018 Pre-Assessment strategy for the proposed commercial areas included in the Guild Living Epsom development.

2.2 Assessment Type

Two BREEAM UK New Construction (NC) 2018 assessments are currently required for the proposed development. These assessments include:

- Retail: BREEAM UK NC 2018 Shell Only assessment; and
- Nursery: BREEAM UK NC 2018 Shell Only assessment.

Figure 2 below identifies the alignment with MEP level of fit out and the BREEAM Assessment methodologies being completed.

Figure 2 BREEAM Assessment Type Definitions

2.3 Assessment Rating

In line with Epsom and Ewell Borough Council Core Strategy (2007), Policy CS6 and Guild Living Brand Standards, the retail and nursery areas will be designed to achieve a BREEAM UK New Construction (NC) 2018 'Very Good' rating (55%>) with an aspiration for 'Excellent' where feasible.

2.4 Pre-Assessment

A Pre-Assessment strategy has been put together for the commercial areas. The strategy has been undertaken by an independently qualified BREEAM Assessor setting out a route to achieve BREEAM 'Very Good' (55%>), as well as highlight the key stages evidence is to be received by, additional appointments, and the design team members responsible for each credit issue.

Credits currently included in the credit score have been reviewed by the design team and each team member has provided feedback regarding credits under their responsibility, as well as any relevant issues.

Following this engagement, the predicted scores were re-calculated, and the following scores were established:

- Retail Baseline score / rating: 64.5% (BREEAM 'Very Good').
- Nursery Baseline score / rating: 64.5% (BREEAM 'Very Good').

All mandatory and minimum standards for the BREEAM 'Very Good' rating have been incorporated within the assessment strategy for the targeted baseline score.

3. Project Team Members.

Discipline	Organisation
Developer/Client	Guild Living
Project Manager	Cast Consultancy
Quantity Surveyor Team/Cost Consultant	Cast Consultancy
Architect	Marchese Partners
Principle Designer	Orsa
Building Services Consultant	Hoare Lea LLP
Civils / Drainage / Structural Consultant	Hydrock
Vertical Transportation Consultant	Hoare Lea LLP
Security Consultant	Hoare Lea LLP
Daylighting and Glare Control Consultant	Avison Young
Energy Assessor (Part L)	Hoare Lea LLP
Landscape Architect	Andy Sturgeon
Ecologist	Arup
Acoustician	Hoare Lea LLP
Planning Consultant	QED
Transport Consultant	Mayer Browne

GUILD LIVING EPSOM

GUILD LIVING

SUSTAINABILITY

BREEAM UK NEW CONSTRUCTION 2018 PRE-ASSESSMENT REPORT – REV. 3

4. Summary Score Sheet.

The summary table below highlights the list of targeted credits for the current BREEAM UK NC 2018 Pre-Assessment. Mandatory credits to achieve a 'Very Good' rating and above are highlighted by **(M)**. Additional mandatory credits for an 'Excellent' or 'Outstanding' rating is highlighted by **(Me)** and **(Mo)** respectively. Exemplary (innovation) credits are written in brackets, e.g. (+1).

Table 1: BREEAM Target Summary.

Category	Issue	Retail + Nursery Shell Only Approach		
		Available	Targeted	
Managem	Man 01: Project brief and design	4	2	
ent	Man 02: Lifecycle cost and service life planning	4	4	
	Man 03: Responsible construction practices (M _e), (M _o)	6 (+1)	6 (+1)	
	Man 04: Commissioning and handover (M _e), (M _o)	1	1	
	Man 05: Aftercare (M _e), (M _o)	N/A	N/A	
Health &	Hea 01: Visual comfort	4 (+1)	2	
Wellbeing	Hea 02: Indoor air quality	N/A	N/A	
	Hea 04: Thermal comfort	N/A	N/A	
	Hea 05: Acoustic performance	1	1	
	Hea 06: Safety	1 (+1)	1	
	Hea 07 Safe and healthy surroundings	2	2	
Energy	Ene 01: Reduction of energy use and CO_2 emissions (M_e) (M_o)	9	0	
	Ene 02: Energy monitoring (M) (M _e) (M _o)	N/A	N/A	
	Ene 03: External lighting	1	1	
	Ene 04: Low carbon design	3	0	
	Ene 05: Energy efficient cold storage	N/A	N/A	
	Ene 06: Energy efficient transportation systems	N/A	N/A	
	Ene 07 Energy efficient laboratory systems	N/A	N/A	
	Ene 08: Energy efficient equipment	N/A	N/A	
Transport	Tra 01: Transport assessment and travel plan	2	2	
	Tra 02: Sustainable transport measures	10	5	
Water	Wat 01: Water consumption (M) (Me) (Mo)	N/A	N/A	
	Wat 02: Water monitoring (M) (M _e) (M _o)	1	1	
	Wat 03: Water leak detection and prevention	1	1	
	Wat 04: Water efficient equipment	1	1	
Materials	Mat 01: Environmental impacts from construction products - Building life cycle assessment	7 (+2)	0	

Retail + Nursery Shell Only Approach Category Issue Targeted Available Mat 02: Environmental impacts from construction Mat 03: Responsible sourcing of materials (M) (Me) (Mo) 4 (+1) 2 1 Mat 05: Designing for durability and resilience 1 1 0 Mat 06: Material efficiency 5 (+1) Waste Wst 01: Construction waste management (M_o) 4 Wst 02: Use of recycled and sustainably sourced 0 1 (+1)aggregates Wst 03: Operational waste (M_e), (M_o) 1 N/A Wst 04 Speculative floor and ceiling finishes N/A Wst 05: Adaptation to climate change 1 (+1)2 Wst 06: Design for disassembly and adaptability 2 2 2 Land Use LE 01: Site selection and LE 02: Identifying and understanding the risks and Ecology 2 (+1) opportunities for the project 3 LE 03: Managing negative impacts on ecology 3 3 LE 04: Change and enhancement of ecological value 4 (+1) LE 05: Long term ecology management and 2 2 maintenance Pollution Pol 01: Impact of refrigerants N/A N/A Pol 02: Local air quality N/A N/A Pol 03: Flood and surface water management 5 4 1 Pol 04: Reduction of night-time light pollution N/A N/A Pol 05: Reduction of noise pollution Innovatio Inn 01: Approved Innovation and Exemplary Level 10 Credits 64.5% Targeted weighted score: Totals Targeted weighted Rating 55%

5. Early Action Credits.

Under the BREEAM Assessment there are a number of credits that are time critical and require early action by the design team in order for the credits to be achieved. For these credits, the actions are required prior to end of RIBA Stages 1 and 2.

It is advised that the Design Team fully to review the actions required in Tables 2 and 3 below to understand the required evidence needed to be demonstrated prior to the completion of RIBA Stages 1 and 2.

SUSTAINABILITY
BREEAM UK NEW CONSTRUCTION
2018 PRE-ASSESSMENT REPORT REV. 3

Table 2: BREEAM NC 2018 RIBA Stage 1 Evidence Requirements

Credit Issues	RIBA Stage 1 Actions	Owner	Comment
LE 02 Ecological risks and opportunities	A Suitably Qualified Ecologist (SQE) carries out a survey and evaluation (see Methodology) for the site early enough to influence site preparation works, layout and, where necessary, strategic planning decisions. The SQE's survey and evaluation determines the site's ecological baseline (see Definitions), including: - Current and potential ecological value and condition of the site and related areas within the Zone of Influence. - Direct and indirect risks to current ecological value from the project. - Capacity and feasibility for enhancement of the site's ecological value and, where relevant, areas within the Zone of Influence.	Arup	Credit partially complete. Arup have provided Ecological Impact Assessment (EIA) to support the planning application, with a Preliminary Ecological Appraisal and Bat Report appended

Table 3: BREEAM NC 2018 RIBA Stage 2 Evidence Requirements

Credit Issues	RIBA Stage 2 Actions	Owner	Comment
Man 01 Project brief and design	Prior to completion of the Concept Design, the project delivery stakeholders meet to identify and define for each key phase of project delivery: (a) Roles; (b) Responsibilities, and (c) Contributions. The project team demonstrates how the project delivery stakeholders' contributions and the consultation process outcomes influence the following: (a) Initial Project Brief; (b) Project Execution Plan; (c) Communication Strategy; and (d) Concept Design.	Morgan Sindall	Credit partially complete. DAS Report to be provided alongside early stage meeting minutes, and Public Consultation Documents.
	Prior to completion of the Concept Design, the design team consult with all interested parties on matters that cover the minimum consultation content. Demonstrate how the stakeholder contributions and consultation exercise outcomes influence the Initial Project Brief and Concept Design.		
Man 02: Life cycle costing and service life planning	Stage 2 Elemental Life Cycle Cost analysis is completed in line with 'Standardised method of life cycle costing for construction procurement' PD 156865: 2008(6). The plan informs the client on: (a) Future replacement costs over a period of analysis as required by the client (e.g. 20, 30, 50 or 60 years); and (b) Includes service life, maintenance and operation cost estimates.	Anthony Waterman (ADW)	Credit Outstanding. ADW have provided a Stage 2 report. Outstanding queries are to be addressed prior to awarding of credit.

Credit Issues	RIBA Stage 2 Actions	Owner	Comment
Hea 06 Security	Appoint a Suitability Qualified Security Specialist (SQSS) to conduct a Security Needs Assessment (SNA).	Hoare Lea Security	Credit partially complete. HL Security have provided SNA outlining the recommendations identified for the scheme. HL Security to confirm if recommendations have changed following recent changes on the scheme. Credit to be secured at Stage 4.
Tra 01 Transport assessment and travel plan	A site-specific transport assessment AND draft travel plan are provided demonstrating full compliance with Tra 01 issue.	Mayer Browne	Credit partially complete. Transport Assessment and Travel Plan documentation have been provided by consultant confirming compliance. Credit to be secured at Stage 4.
Wst 01 Construction waste management	Complete a pre-demolition audit of any existing buildings, structures or hard surfaces being considered for Demolition*. *If Demolition is not taking place at RIBA Stage 2 this documentation can be accepted at a later stage.	Demolition Contractor	Credit preliminary awarded. Due to appointment timescales, requirement has been captured within Principal Contractors (Demo + Construction) prelims document.
Wst 05 Adaptation to climate change	Conduct a climate change adaptation strategy appraisal. The assessment covers the installation of building services and renewable systems, as well as structural and fabric resilience aspects.	Marchese	Credit partially complete. Credit partially completed Outstanding evidence awaiting from Marchese.
Wst 06 Design for disassembly and adaptability	Conduct a study to explore the ease of disassembly and the functional adaptation potential of different design scenarios. Develop recommendations or solutions based on the study during or prior to Concept Design, that aim to enable and facilitate disassembly and functional adaptation.	Marchese	Credit partially complete. Credit partially completed. Outstanding evidence awaiting from Marchese.
LE 02 Ecological risks and opportunities	The project team liaise and collaborate with representative stakeholders early enough to influence key planning decisions to: (a) Identify the optimal ecological outcomes for the site; and (b) Identify, appraise and select measures to meet the	Arup	Credit partially complete. Arup have been appointed to undertake LE 02 and LE 03 criteria within their package of works.

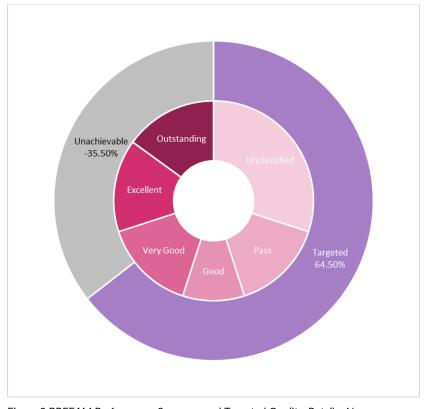
SUSTAINABILITY
BREEAM UK NEW CONSTRUCTION
2018 PRE-ASSESSMENT REPORT REV. 3

Credit Issues	RIBA Stage 2 Actions	Owner	Comment
	optimal ecological outcomes for the site in line with the mitigation hierarchy of action, according to the route being used.		Full package to be provided post planning submission (Stage 4).
LE 03 Managing impacts on ecology	Further planning to avoid and manage negative ecological impacts on-site is carried out early enough to influence the concept design and design brief as well as site preparation planning.		

9

SUSTAINABILITY

BREEAM UK NEW CONSTRUCTION 2018 PRE-ASSESSMENT REPORT – REV. 3


6. Conclusion.

Based upon an initial credit review, it is anticipated that the assessed areas can achieve a targeted score well within the BREEAM 'Very Good' (55%>) benchmark rating. Currently the targeted scores for the assessment as follows:

- Retail Baseline score / rating: 64.5% (BREEAM 'Very Good'); and
- Nursery Baseline score / rating: 64.5% (BREEAM 'Very Good').

Following from this Pre-Assessment issue it is advised all early stage credits are fully reviewed and actioned as soon as possible in order to secure the strategy moving forward.

Figures 3 and 4 below provide a visual representation for the scores targeted and unachievable credit scores currently identified for each assessment.

 $\label{thm:prop:summary} \textbf{Figure 3 BREEAM Performance Summary and Targeted Credits: Retail + Nursery assessment.}$

10

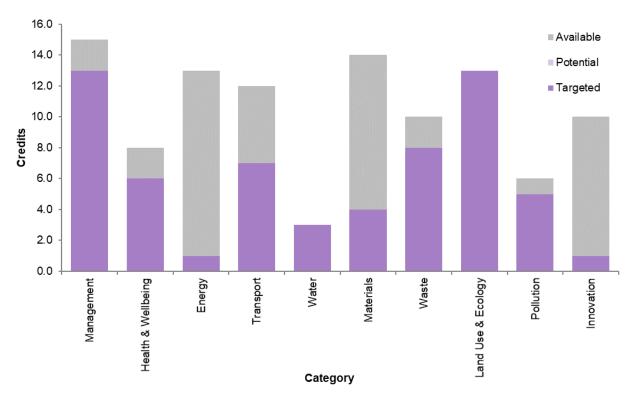
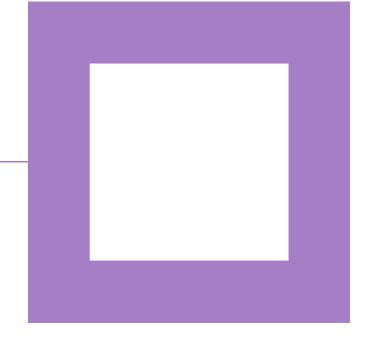


Figure 4 BREEAM Performance Summary and Targeted Credits (Bar Representation).


ALEXANDRA BRYANT

SUSTAINABILITY ASSESSOR

+44 1202 654 618 alexandrabryant@hoarelea.com

HOARELEA.COM

Enterprise House Old School Close Ferndown Bournemouth BH22 9UN England

